BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet. 2019;10:1017. [PMID: 31737035 DOI: 10.3389/fgene.2019.01017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Wah-Suárez MI, Vázquez MAM, Bosques-Padilla FJ. Inflammatory bowel disease: The role of commensal microbiome in immune regulation. Gastroenterol Hepatol 2021:S0210-5705(21)00253-3. [PMID: 34543718 DOI: 10.1016/j.gastrohep.2021.08.008] [Reference Citation Analysis]
2 Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res 2021;787:108365. [PMID: 34083039 DOI: 10.1016/j.mrrev.2021.108365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
3 Fernández-Ponce C, Navarro Quiroz R, Díaz Perez A, Aroca Martinez G, Cadena Bonfanti A, Acosta Hoyos A, Gómez Escorcia L, Hernández Agudelo S, Orozco Sánchez C, Villarreal Camacho J, Atencio Ibarra L, Consuegra Machado J, Espinoza Garavito A, García-Cózar F, Navarro Quiroz E. MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clin Epigenetics 2021;13:39. [PMID: 33602320 DOI: 10.1186/s13148-021-01022-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Gong SS, Fan YH, Lv B, Zhang MQ, Xu Y, Zhao J. Fatigue in patients with inflammatory bowel disease in Eastern China. World J Gastroenterol 2021; 27(11): 1076-1089 [PMID: 33776374 DOI: 10.3748/wjg.v27.i11.1076] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yu YL, Chen M, Zhu H, Zhuo MX, Chen P, Mao YJ, Li LY, Zhao Q, Wu M, Ye M. STAT1 epigenetically regulates LCP2 and TNFAIP2 by recruiting EP300 to contribute to the pathogenesis of inflammatory bowel disease. Clin Epigenetics 2021;13:127. [PMID: 34112215 DOI: 10.1186/s13148-021-01101-w] [Reference Citation Analysis]
6 Battistini C, Ballan R, Herkenhoff ME, Saad SMI, Sun J. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci 2020;22:E362. [PMID: 33396382 DOI: 10.3390/ijms22010362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
7 Zeng Z, Ma C, Chen K, Jiang M, Vasu R, Liu R, Zhao Y, Zhang H. Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021;10:2988. [PMID: 34831211 DOI: 10.3390/cells10112988] [Reference Citation Analysis]
8 Snyder EF, Davis S, Aldrich K, Veerabagu M, Larussa T, Abenavoli L, Boccuto L. Crohn disease: Identification, diagnosis, and clinical management. Nurse Pract 2021;46:22-30. [PMID: 34808643 DOI: 10.1097/01.NPR.0000798212.61425.4f] [Reference Citation Analysis]
9 Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021;12:797490. [PMID: 34992636 DOI: 10.3389/fgene.2021.797490] [Reference Citation Analysis]
10 Mäki-Nevala S, Ukwattage S, Wirta EV, Ahtiainen M, Ristimäki A, Seppälä TT, Lepistö A, Mecklin JP, Peltomäki P. Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis. Biomolecules 2021;11:1440. [PMID: 34680073 DOI: 10.3390/biom11101440] [Reference Citation Analysis]
11 Dybska E, Adams AT, Duclaux-Loras R, Walkowiak J, Nowak JK. Waiting in the wings: RUNX3 reveals hidden depths of immune regulation with potential implications for inflammatory bowel disease. Scand J Immunol 2021;93:e13025. [PMID: 33528856 DOI: 10.1111/sji.13025] [Reference Citation Analysis]
12 Annese V. Genetics and epigenetics of IBD. Pharmacol Res 2020;159:104892. [PMID: 32464322 DOI: 10.1016/j.phrs.2020.104892] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
13 Kellermayer R, Zilbauer M. The Gut Microbiome and the Triple Environmental Hit Concept of Inflammatory Bowel Disease Pathogenesis. J Pediatr Gastroenterol Nutr 2020;71:589-95. [PMID: 33093364 DOI: 10.1097/MPG.0000000000002908] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
14 Khaki-Khatibi F, Qujeq D, Kashifard M, Moein S, Maniati M, Vaghari-Tabari M. Calprotectin in inflammatory bowel disease. Clin Chim Acta 2020;510:556-65. [PMID: 32818491 DOI: 10.1016/j.cca.2020.08.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Hornschuh M, Wirthgen E, Wolfien M, Singh KP, Wolkenhauer O, Däbritz J. The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clin Epigenetics 2021;13:108. [PMID: 33980294 DOI: 10.1186/s13148-021-01089-3] [Reference Citation Analysis]
16 Park MK, Lee JC, Lee JW, Hwang SJ. Alu cell-free DNA concentration, Alu index, and LINE-1 hypomethylation as a cancer predictor. Clin Biochem 2021;94:67-73. [PMID: 33901468 DOI: 10.1016/j.clinbiochem.2021.04.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]