BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sidler C, Kovalchuk O, Kovalchuk I. Epigenetic Regulation of Cellular Senescence and Aging. Front Genet. 2017;8:138. [PMID: 29018479 DOI: 10.3389/fgene.2017.00138] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 10.4] [Reference Citation Analysis]
Number Citing Articles
1 Greville G, Llop E, Howard J, Madden SF, Perry AS, Peracaula R, Rudd PM, McCann A, Saldova R. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics 2021;13:34. [PMID: 33579350 DOI: 10.1186/s13148-021-01015-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wakim JG, Sandholtz SH, Spakowitz AJ. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophys J 2021;120:4932-43. [PMID: 34687722 DOI: 10.1016/j.bpj.2021.10.019] [Reference Citation Analysis]
3 Sachdeva K, Do DC, Zhang Y, Hu X, Chen J, Gao P. Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence. Front Immunol 2019;10:2787. [PMID: 31849968 DOI: 10.3389/fimmu.2019.02787] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
4 Elder SS, Emmerson E. Senescent cells and macrophages: key players for regeneration? Open Biol 2020;10:200309. [PMID: 33352064 DOI: 10.1098/rsob.200309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2021;43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Reference Citation Analysis]
6 Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Seminars in Cancer Biology 2020;62:182-91. [DOI: 10.1016/j.semcancer.2019.06.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
7 Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020;52:1466-74. [PMID: 32887933 DOI: 10.1038/s12276-020-00497-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
8 Paluvai H, Di Giorgio E, Brancolini C. The Histone Code of Senescence. Cells 2020;9:E466. [PMID: 32085582 DOI: 10.3390/cells9020466] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
9 Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022;11:672. [DOI: 10.3390/cells11040672] [Reference Citation Analysis]
10 Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018;9:596. [PMID: 30619445 DOI: 10.3389/fgene.2018.00596] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
11 Sławińska N, Krupa R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int J Mol Sci 2021;22:E590. [PMID: 33435578 DOI: 10.3390/ijms22020590] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Padeken J, Zeller P, Towbin B, Katic I, Kalck V, Methot SP, Gasser SM. Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes Dev 2019;33:436-51. [PMID: 30804228 DOI: 10.1101/gad.322495.118] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
13 Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD Jr, Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol 2019;316:L826-42. [PMID: 30785345 DOI: 10.1152/ajplung.00424.2018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
14 Pavanello S, Campisi M, Fabozzo A, Cibin G, Tarzia V, Toscano G, Gerosa G. The biological age of the heart is consistently younger than chronological age. Sci Rep 2020;10:10752. [PMID: 32612244 DOI: 10.1038/s41598-020-67622-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Narendran N, Luzhna L, Kovalchuk O. Sex Difference of Radiation Response in Occupational and Accidental Exposure. Front Genet 2019;10:260. [PMID: 31130979 DOI: 10.3389/fgene.2019.00260] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
16 Zhao N, Sheng M, Zhao J, Ma X, Wei Q, Song Q, Zhang K, Xu W, Sun C, Liu F, Su Z. Over-Expression of HDA710 Delays Leaf Senescence in Rice (Oryza sativa L.). Front Bioeng Biotechnol 2020;8:471. [PMID: 32509751 DOI: 10.3389/fbioe.2020.00471] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Li Y, Zhong H, Wu M, Tan B, Zhao L, Yi Q, Xu X, Pan H, Bi Y, Yang K. Decline of p300 contributes to cell senescence and growth inhibition of hUC-MSCs through p53/p21 signaling pathway. Biochem Biophys Res Commun 2019;515:24-30. [PMID: 31122700 DOI: 10.1016/j.bbrc.2019.05.061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
18 Silva-Palacios A, Ostolga-Chavarría M, Zazueta C, Königsberg M. Nrf2: Molecular and epigenetic regulation during aging. Ageing Res Rev 2018;47:31-40. [PMID: 29913211 DOI: 10.1016/j.arr.2018.06.003] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 15.3] [Reference Citation Analysis]
19 Kishimoto S, Uno M, Nishida E. Molecular mechanisms regulating lifespan and environmental stress responses. Inflamm Regen 2018;38:22. [PMID: 30555601 DOI: 10.1186/s41232-018-0080-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Ryan CP, Hayes MG, Lee NR, McDade TW, Jones MJ, Kobor MS, Kuzawa CW, Eisenberg DTA. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci Rep 2018;8:11100. [PMID: 30038336 DOI: 10.1038/s41598-018-29486-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
21 Tecalco-Cruz AC, Ramírez-Jarquín JO, Alvarez-Sánchez ME, Zepeda-Cervantes J. Epigenetic basis of Alzheimer disease. World J Biol Chem 2020; 11(2): 62-75 [PMID: 33024518 DOI: 10.4331/wjbc.v11.i2.62] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
22 Lettieri-barbato D, Aquilano K, Punziano C, Minopoli G, Faraonio R. MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Redox Control of Cell Senescence. Antioxidants 2022;11:480. [DOI: 10.3390/antiox11030480] [Reference Citation Analysis]
23 Sanchez-Fernandez C, Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Histone Epigenetic Signatures in Embryonic Limb Interdigital Cells Fated to Die. Cells 2021;10:911. [PMID: 33921015 DOI: 10.3390/cells10040911] [Reference Citation Analysis]
24 Frisch SM, MacFawn IP. Type I interferons and related pathways in cell senescence. Aging Cell 2020;19:e13234. [PMID: 32918364 DOI: 10.1111/acel.13234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Jasiulionis MG. Abnormal Epigenetic Regulation of Immune System during Aging. Front Immunol 2018;9:197. [PMID: 29483913 DOI: 10.3389/fimmu.2018.00197] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
26 Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021;41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Reference Citation Analysis]
27 Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. Aging Cell 2020;19:e13080. [PMID: 31833194 DOI: 10.1111/acel.13080] [Cited by in Crossref: 91] [Cited by in F6Publishing: 88] [Article Influence: 30.3] [Reference Citation Analysis]
28 Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021;9:1635. [PMID: 34829864 DOI: 10.3390/biomedicines9111635] [Reference Citation Analysis]
29 Sacco A, Belloni L, Latella L. From Development to Aging: The Path to Cellular Senescence. Antioxid Redox Signal 2021;34:294-307. [PMID: 32228062 DOI: 10.1089/ars.2020.8071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020;7:191. [PMID: 32509793 DOI: 10.3389/fmed.2020.00191] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
31 Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020;43:1373-89. [PMID: 32358737 DOI: 10.1007/s40618-020-01255-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
32 Gerasymchuk M, Cherkasova V, Kovalchuk O, Kovalchuk I. The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020;21:E5281. [PMID: 32722415 DOI: 10.3390/ijms21155281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Kim JE. Bookmarking by histone methylation ensures chromosomal integrity during mitosis. Arch Pharm Res 2019;42:466-80. [PMID: 31020544 DOI: 10.1007/s12272-019-01156-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
34 Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021;405:112679. [PMID: 34102225 DOI: 10.1016/j.yexcr.2021.112679] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucleic Acids Res 2019;47:7294-305. [PMID: 31251810 DOI: 10.1093/nar/gkz555] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 16.0] [Reference Citation Analysis]
36 Ng GY, Sheng DPLK, Bae HG, Kang SW, Fann DY, Park J, Kim J, Alli-Shaik A, Lee J, Kim E, Park S, Han JW, Karamyan V, Okun E, Dheen T, Hande MP, Vemuganti R, Mallilankaraman K, Lim LHK, Kennedy BK, Drummond GR, Sobey CG, Gunaratne J, Mattson MP, Foo RS, Jo DG, Arumugam TV. Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain. Geroscience 2022. [PMID: 35357643 DOI: 10.1007/s11357-022-00537-z] [Reference Citation Analysis]
37 Yang N, Sen P. The senescent cell epigenome. Aging (Albany NY) 2018;10:3590-609. [PMID: 30391936 DOI: 10.18632/aging.101617] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
38 Zhang X, Liu X, Du Z, Wei L, Fang H, Dong Q, Niu J, Li Y, Gao J, Zhang MQ, Xie W, Wang X. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res 2021. [PMID: 34140314 DOI: 10.1101/gr.275235.121] [Reference Citation Analysis]
39 Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol. 2020;21:137-150. [PMID: 32020082 DOI: 10.1038/s41580-019-0204-5] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 35.0] [Reference Citation Analysis]
40 Zhang H, Zhang P, Yu TL. Comparative study of computed tomography of normal and lymphoid follicular hyperplasia thymus in myasthenia gravis patients. Exp Ther Med 2019;17:512-8. [PMID: 30651830 DOI: 10.3892/etm.2018.6948] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020;77:213-29. [PMID: 31414165 DOI: 10.1007/s00018-019-03261-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
42 Ferrari S, Pesce M. Stiffness and Aging in Cardiovascular Diseases: The Dangerous Relationship between Force and Senescence. Int J Mol Sci 2021;22:3404. [PMID: 33810253 DOI: 10.3390/ijms22073404] [Reference Citation Analysis]
43 Delaney CE, Methot SP, Guidi M, Katic I, Gasser SM, Padeken J. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J Cell Biol 2019;218:820-38. [PMID: 30737265 DOI: 10.1083/jcb.201811038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
44 Jimenez-Gutierrez GE, Mondragon-Gonzalez R, Soto-Ponce LA, Gómez-Monsiváis WL, García-Aguirre I, Pacheco-Rivera RA, Suárez-Sánchez R, Brancaccio A, Magaña JJ, C R Perlingeiro R, Cisneros B. Loss of Dystroglycan Drives Cellular Senescence via Defective Mitosis-Mediated Genomic Instability. Int J Mol Sci 2020;21:E4961. [PMID: 32674290 DOI: 10.3390/ijms21144961] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
45 Price AJ, Manjegowda MC, Kain J, Anandh S, Bochkis IM. Hdac3, Setdb1, and Kap1 mark H3K9me3/H3K14ac bivalent regions in young and aged liver. Aging Cell 2020;19:e13092. [PMID: 31858687 DOI: 10.1111/acel.13092] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
46 Orioli D, Dellambra E. Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018;7:E268. [PMID: 30545089 DOI: 10.3390/cells7120268] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]
47 Ray D, Yung R. Immune senescence, epigenetics and autoimmunity. Clin Immunol 2018;196:59-63. [PMID: 29654845 DOI: 10.1016/j.clim.2018.04.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 10.5] [Reference Citation Analysis]
48 Tang D, Gallusci P, Lang Z. Fruit development and epigenetic modifications. New Phytol 2020;228:839-44. [PMID: 32506476 DOI: 10.1111/nph.16724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
49 Park J, Belden WJ. Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin. BMC Genomics 2018;19:777. [PMID: 30373515 DOI: 10.1186/s12864-018-5170-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]