BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020;8:271. [DOI: 10.3389/fevo.2020.00271] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Ware-Gilmore F, Novelo M, Sgrò CM, Hall MD, McGraw EA. Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2023;378:20220011. [PMID: 36744557 DOI: 10.1098/rstb.2022.0011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Vasudeva R. Experimental evidence for stronger impacts of larval but not adult rearing temperature on female fertility and lifespan in a seed beetle. Evol Ecol 2023. [DOI: 10.1007/s10682-022-10227-z] [Reference Citation Analysis]
3 Muluvhahothe MM, Joubert E, Foord SH. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults. J Therm Biol 2023;111:103395. [PMID: 36585076 DOI: 10.1016/j.jtherbio.2022.103395] [Reference Citation Analysis]
4 Stevens DR, Wund MA, Mathis KA. Integrating environmental complexity and the plasticity-first hypothesis to study responses to human-altered habitats. Animal Behaviour 2023. [DOI: 10.1016/j.anbehav.2022.12.005] [Reference Citation Analysis]
5 Manlik O, Mundra S, Schmid-Hempel R, Schmid-Hempel P. Impact of climate change on parasite infection of an important pollinator depends on host genotypes. Glob Chang Biol 2023;29:69-80. [PMID: 36176231 DOI: 10.1111/gcb.16460] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bellin N, Calzolari M, Magoga G, Callegari E, Bonilauri P, Lelli D, Dottori M, Montagna M, Rossi V. Unsupervised machine learning and geometric morphometrics as tools for the identification of inter and intraspecific variations in the Anopheles Maculipennis complex. Acta Trop 2022;:106585. [PMID: 35787418 DOI: 10.1016/j.actatropica.2022.106585] [Reference Citation Analysis]
7 Hellegers M, van Swaay CAM, van Hinsberg A, Huijbregts MAJ, Schipper AM. Modulating Effects of Landscape Characteristics on Responses to Warming Differ Among Butterfly Species. Front Ecol Evol 2022;10:873366. [DOI: 10.3389/fevo.2022.873366] [Reference Citation Analysis]
8 Sinclair BJ, Sørensen JG, Terblanche JS. Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. Bull Entomol Res . [DOI: 10.1017/s0007485321000791] [Reference Citation Analysis]
9 Buckley LB. Temperature-sensitive development shapes insect phenological responses to climate change. Current Opinion in Insect Science 2022. [DOI: 10.1016/j.cois.2022.100897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Aguirrebengoa M, Wong ME, Boyero JR, Quinto J. Host Gall Size and Temperature Influence Voltinism in an Exotic Parasitoid. Front Ecol Evol 2022;10:784111. [DOI: 10.3389/fevo.2022.784111] [Reference Citation Analysis]
11 Kim K, Taylor DJ, Beisner BE. Thermal phenotypic plasticity of the second limb in Daphnia. Journal of Plankton Research 2022. [DOI: 10.1093/plankt/fbac003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Jerbi-Elayed M, Tougeron K, Grissa-Lebdi K, Hance T. Effect of developmental temperatures on Aphidius colemani host-foraging behavior at high temperature. J Therm Biol 2022;103:103140. [PMID: 35027198 DOI: 10.1016/j.jtherbio.2021.103140] [Reference Citation Analysis]
13 Carmo RFR, Astúa D, Vasconcelos SD. Environmental conditions differently affect the wing size and shape of two blow fly species (Calliphoridae) of forensic importance in the Brazilian tropical ecosystems. Int J Trop Insect Sci. [DOI: 10.1007/s42690-021-00720-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Duell ME, Gray MT, Roe AD, Macquarrie CJ, Sinclair BJ. Plasticity drives extreme cold tolerance of emerald ash borer (Agrilus planipennis) during a polar vortex. Current Research in Insect Science 2022;2:100031. [DOI: 10.1016/j.cris.2022.100031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kuczyk J, Raharivololoniaina A, Fischer K. Population‐specific responses of an insect herbivore to variation in host‐plant quality. Ecology and Evolution 2021;11:17963-17972. [DOI: 10.1002/ece3.8392] [Reference Citation Analysis]
16 McCabe LM, Aslan CE, Cobb NS. Decreased bee emergence along an elevation gradient: Implications for climate change revealed by a transplant experiment. Ecology 2021;:e03598. [PMID: 34813669 DOI: 10.1002/ecy.3598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Rodrigues LR, McDermott HA, Villanueva I, Djukarić J, Ruf LC, Amcoff M, Snook RR. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J Anim Ecol 2021. [PMID: 34775602 DOI: 10.1111/1365-2656.13636] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021;9. [DOI: 10.3389/fevo.2021.734031] [Reference Citation Analysis]
19 Farahani MM, Hosseinian SA. Evaluation of the growth performance, physiological traits, antioxidant indices, and heat shock protein 70 to dietary supplementation of stinging nettle (Urtica dioica) in broilers exposed to chronic heat stress.. [DOI: 10.1101/2021.02.26.433121] [Reference Citation Analysis]
20 Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev 2021;69:6-13. [PMID: 33434722 DOI: 10.1016/j.gde.2020.12.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant–herbivore interactions. New Phytol 2021;229:1894-910. [DOI: 10.1111/nph.17036] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 17.3] [Reference Citation Analysis]