For: | Hong W, Zhou X, Jin S, Lu Y, Pan J, Lin Q, Yang S, Xu T, Basharat Z, Zippi M, Fiorino S, Tsukanov V, Stock S, Grottesi A, Chen Q, Pan J. A Comparison of XGBoost, Random Forest, and Nomograph for the Prediction of Disease Severity in Patients With COVID-19 Pneumonia: Implications of Cytokine and Immune Cell Profile. Front Cell Infect Microbiol 2022;12:819267. [PMID: 35493729 DOI: 10.3389/fcimb.2022.819267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis] |
---|
Number | Citing Articles |
1 | Pan Z, Zhang R, Shen S, Lin Y, Zhang L, Wang X, Ye Q, Wang X, Chen J, Zhao Y, Christiani DC, Li Y, Chen F, Wei Y. OWL: an optimized and independently validated machine learning prediction model for lung cancer screening based on the UK Biobank, PLCO, and NLST populations. EBioMedicine 2023;88:104443. [PMID: 36701900 DOI: 10.1016/j.ebiom.2023.104443] [Reference Citation Analysis] |
2 | Song X, Li H, Chen Q, Zhang T, Huang G, Zou L, Du D. Predicting pneumonia during hospitalization in flail chest patients using machine learning approaches. Front Surg 2022;9:1060691. [PMID: 36684357 DOI: 10.3389/fsurg.2022.1060691] [Reference Citation Analysis] |
3 | Milella F, Famiglini L, Banfi G, Cabitza F. Application of Machine Learning to Improve Appropriateness of Treatment in an Orthopaedic Setting of Personalized Medicine. J Pers Med 2022;12:1706. [PMID: 36294845 DOI: 10.3390/jpm12101706] [Reference Citation Analysis] |