BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: in silico Molecular Docking Studies and in vitro Enzymatic Activity Assay. Front Chem 2020;8:623971. [PMID: 33364229 DOI: 10.3389/fchem.2020.623971] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Guerra Y, Celi D, Cueva P, Perez-castillo Y, Giampieri F, Alvarez-suarez JM, Tejera E. Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules. ACS Omega 2022. [DOI: 10.1021/acsomega.2c05766] [Reference Citation Analysis]
2 da Cruz Freire JE, Júnior JEM, Pinheiro DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP, Freire EBL, Ozório RG, Fernandes VO, Montenegro APDR, Montenegro RC, Colares JKB, Júnior RMM. Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics. 3 Biotech 2022;12:344. [DOI: 10.1007/s13205-022-03406-w] [Reference Citation Analysis]
3 Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. Molecules 2022;27:5166. [PMID: 36014406 DOI: 10.3390/molecules27165166] [Reference Citation Analysis]
4 Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022. [PMID: 35917086 DOI: 10.1007/s12640-022-00542-2] [Reference Citation Analysis]
5 Hong L, He M, Li S, Zhao J. Predicting for anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of Lianhua Qingwen Capsules in treating COVID-19. Chin Med 2022;17:84. [PMID: 35799189 DOI: 10.1186/s13020-022-00637-0] [Reference Citation Analysis]
6 Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022;7:202. [PMID: 35764603 DOI: 10.1038/s41392-022-01039-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
7 Znaidia M, Demeret C, van der Werf S, Komarova AV. Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses 2022;14:1247. [PMID: 35746718 DOI: 10.3390/v14061247] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Kashyap D, Roy R, Kar P, Jha HC. Plant-derived active compounds as a potential nucleocapsid protein inhibitor of SARS-CoV-2: an in-silico study. J Biomol Struct Dyn 2022;:1-16. [PMID: 35532092 DOI: 10.1080/07391102.2022.2072951] [Reference Citation Analysis]
9 Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022;13:834942. [PMID: 35450063 DOI: 10.3389/fimmu.2022.834942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
10 Srivastava R. Chemical Reactivity and Optical and Pharmacokinetics Studies of 14 Multikinase Inhibitors and Their Docking Interactions Toward ACK1 for Precision Oncology. Front Chem 2022;10:843642. [DOI: 10.3389/fchem.2022.843642] [Reference Citation Analysis]
11 Freitas BT, Ahiadorme DA, Bagul RS, Durie IA, Ghosh S, Hill J, Kramer NE, Murray J, O'Boyle BM, Onobun E, Pirrone MG, Shepard JD, Enos S, Subedi YP, Upadhyaya K, Tripp RA, Cummings BS, Crich D, Pegan SD. Exploring Noncovalent Protease Inhibitors for the Treatment of Severe Acute Respiratory Syndrome and Severe Acute Respiratory Syndrome-Like Coronaviruses. ACS Infect Dis 2022;8:596-611. [PMID: 35199517 DOI: 10.1021/acsinfecdis.1c00631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Geromichalou EG, Trafalis DT, Dalezis P, Malis G, Psomas G, Geromichalos GD. In silico study of potential antiviral activity of copper(II) complexes with non–steroidal anti–inflammatory drugs on various SARS–CoV–2 target proteins. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111805] [Reference Citation Analysis]
13 Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCC, de Oliveira MGP, Sousa TDC, Horta MAP, Siqueira MM, Fernandez JH. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front Microbiol 2022;13:828984. [PMID: 35222340 DOI: 10.3389/fmicb.2022.828984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Kumar A, Singh RP, Kumar I, Yadav P, Singh SK, Kaushalendra, Singh PK, Gupta RK, Singh SM, Kesawat MS, Saratale GD, Chung S, Kumar M. Algal Metabolites Can Be an Immune Booster against COVID-19 Pandemic. Antioxidants 2022;11:452. [DOI: 10.3390/antiox11030452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Liang JJ, Pitsillou E, Ververis K, Guallar V, Hung A, Karagiannis TC. Investigation of small molecule inhibitors of the SARS-CoV-2 papain-like protease by all-atom microsecond modelling, PELE Monte Carlo simulations, and in vitro activity inhibition. Chemical Physics Letters 2022;788:139294. [DOI: 10.1016/j.cplett.2021.139294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Cao Y, Yang R, Wang W, Jiang S, Yang C, Liu N, Dai H, Lee I, Meng X, Yuan Z. Probing the Formation, Structure and Free Energy Relationships of M Protein Dimers of SARS-CoV-2. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.01.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Medina-franco JL, Gutiérrez-nieto R, Gómez-velasco H. Progress on Open Chemoinformatic Tools for Drug Discovery. Drug Target Selection and Validation 2022. [DOI: 10.1007/978-3-030-95895-4_9] [Reference Citation Analysis]
18 Ye N, Yang Z, Liu Y. Applications of density functional theory in COVID-19 drug modeling. Drug Discov Today 2021:S1359-6446(21)00568-7. [PMID: 34954327 DOI: 10.1016/j.drudis.2021.12.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Sanachai K, Mahalapbutr P, Sanghiran Lee V, Rungrotmongkol T, Hannongbua S. In Silico Elucidation of Potent Inhibitors and Rational Drug Design against SARS-CoV-2 Papain-like Protease. J Phys Chem B 2021;125:13644-56. [PMID: 34904832 DOI: 10.1021/acs.jpcb.1c07060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Kocabaş F, Uslu M. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Turk J Biol 2021;45:469-83. [PMID: 34803448 DOI: 10.3906/biy-2106-42] [Reference Citation Analysis]
21 Marondedze EF, Govender PP. Exploiting the glycan receptor-binding site of PltB subunit in salmonella typhi toxin for novel inhibitors: An in-silico approach. J Mol Graph Model 2021;111:108082. [PMID: 34837784 DOI: 10.1016/j.jmgm.2021.108082] [Reference Citation Analysis]
22 Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021;59:959-77. [PMID: 34724178 DOI: 10.1007/s12275-021-1467-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int J Mol Sci 2021;22:11069. [PMID: 34681727 DOI: 10.3390/ijms222011069] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
24 Pitsillou E, Liang J, Yu Meng Huang H, Hung A, Karagiannis TC. In silico investigation to identify potential small molecule inhibitors of the RNA-dependent RNA polymerase (RdRp) nidovirus RdRp-associated nucleotidyltransferase domain. Chem Phys Lett 2021;779:138889. [PMID: 34305155 DOI: 10.1016/j.cplett.2021.138889] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhu W, Shyr Z, Lo DC, Zheng W. Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. J Pharmacol Exp Ther 2021;378:166-72. [PMID: 33972366 DOI: 10.1124/jpet.121.000688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
26 Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 2021;133:104383. [PMID: 33915361 DOI: 10.1016/j.compbiomed.2021.104383] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
27 Ali AM, Kunugi H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021;26:1232. [PMID: 33669054 DOI: 10.3390/molecules26051232] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 47.0] [Reference Citation Analysis]
28 Mousavi SH, Mohammadizadeh MR, Poorsadeghi S, Arimitsu S, Mohammadsaleh F, Kojya G, Gima S. One-pot synthesis of new alkyl 1-naphthoates bearing quinoline, pyranone and cyclohexenone moieties via metal-free sequential addition/oxidation reactions. RSC Adv 2021;11:36748-36752. [DOI: 10.1039/d1ra07092d] [Reference Citation Analysis]