BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hiramoto K, Ino K, Nashimoto Y, Ito K, Shiku H. Electric and Electrochemical Microfluidic Devices for Cell Analysis. Front Chem 2019;7:396. [PMID: 31214576 DOI: 10.3389/fchem.2019.00396] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Yin B, Wan X, Qian C, Sohan ASMMF, Wang S, Zhou T. Point-of-Care Testing for Multiple Cardiac Markers Based on a Snail-Shaped Microfluidic Chip. Front Chem 2021;9:741058. [PMID: 34671590 DOI: 10.3389/fchem.2021.741058] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ma Z, Luo Y, Zhu Q, Jiang M, Pan M, Xie T, Huang X, Chen D. In-situ monitoring of glucose metabolism in cancer cell microenvironments based on hollow fiber structure. Biosensors and Bioelectronics 2020;162:112261. [DOI: 10.1016/j.bios.2020.112261] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Ferguson C, Pini N, Du X, Farina M, Hwang JMC, Pietrangelo T, Cheng X. Broadband electrical impedance as a novel characterization of oxidative stress in single L6 skeletal muscle cells. Anal Chim Acta 2021;1173:338678. [PMID: 34172152 DOI: 10.1016/j.aca.2021.338678] [Reference Citation Analysis]
4 Dong Z, Wang Y, Yin D, Hang X, Pu L, Zhang J, Geng J, Chang L. Advanced techniques for gene heterogeneity research: Single‐cell sequencing and on‐chip gene analysis systems. VIEW 2022;3:20210011. [DOI: 10.1002/viw.20210011] [Reference Citation Analysis]
5 Sun J, Gao L, Wang L, Sun X. Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021;234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cui F, Zhou Z, Zhou HS. Review—Measurement and Analysis of Cancer Biomarkers Based on Electrochemical Biosensors. J Electrochem Soc 2020;167:037525. [DOI: 10.1149/2.0252003jes] [Cited by in Crossref: 39] [Cited by in F6Publishing: 2] [Article Influence: 19.5] [Reference Citation Analysis]
7 Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021;:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Reference Citation Analysis]
8 Liu Y, Moore JH, Harbaugh S, Chavez J, Chou CF, Swami NS. Multiplexed assessment of engineered bacterial constructs for intracellular β-galactosidase expression by redox amplification on catechol-chitosan modified nanoporous gold. Mikrochim Acta 2021;189:4. [PMID: 34855041 DOI: 10.1007/s00604-021-05109-0] [Reference Citation Analysis]
9 Ino K, Pai HJ, Hiramoto K, Utagawa Y, Nashimoto Y, Shiku H. Electrochemical Imaging of Endothelial Permeability Using a Large-Scale Integration-Based Device. ACS Omega 2021;6:35476-83. [PMID: 34984279 DOI: 10.1021/acsomega.1c04931] [Reference Citation Analysis]
10 Bakht SM, Pardo A, Gómez-Florit M, Reis RL, Domingues RMA, Gomes ME. Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. J Mater Chem B 2021;9:5025-38. [PMID: 34014245 DOI: 10.1039/d1tb00717c] [Reference Citation Analysis]
11 Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. Biomicrofluidics 2021;15:061502. [PMID: 34777677 DOI: 10.1063/5.0071176] [Reference Citation Analysis]
12 Ino K, Ozawa F, Dang N, Hiramoto K, Hino S, Akasaka R, Nashimoto Y, Shiku H. Biofabrication Using Electrochemical Devices and Systems. Adv Biosys 2020;4:1900234. [DOI: 10.1002/adbi.201900234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Martín Várguez PE, Brunel F, Raimundo JM. Recent Electrochemical/Electrical Microfabricated Sensor Devices for Ionic and Polyionic Analytes. ACS Omega 2020;5:4733-42. [PMID: 32201758 DOI: 10.1021/acsomega.9b04331] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
14 Grigorov E, Kirov B, Marinov MB, Galabov V. Review of Microfluidic Methods for Cellular Lysis. Micromachines (Basel) 2021;12:498. [PMID: 33925101 DOI: 10.3390/mi12050498] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2021;93:167-83. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
16 Leung CM, de Haan P, Ronaldson-bouchard K, Kim G, Ko J, Rho HS, Chen Z, Habibovic P, Jeon NL, Takayama S, Shuler ML, Vunjak-novakovic G, Frey O, Verpoorte E, Toh Y. A guide to the organ-on-a-chip. Nat Rev Methods Primers 2022;2. [DOI: 10.1038/s43586-022-00118-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Utagawa Y, Hiramoto K, Nashimoto Y, Ino K, Shiku H. In vitro electrochemical assays for vascular cells and organs. Electrochemical Science Advances. [DOI: 10.1002/elsa.202100089] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]