BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020;8:602646. [PMID: 33363131 DOI: 10.3389/fbioe.2020.602646] [Cited by in Crossref: 7] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang D, Gust M, Ferrell N. Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. Sensors 2022;22:6889. [DOI: 10.3390/s22186889] [Reference Citation Analysis]
2 Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022;12:989451. [DOI: 10.3389/fcimb.2022.989451] [Reference Citation Analysis]
3 Kwak D, Olsen PA, Danielsen A, Jensenius AR. A trio of biological rhythms and their relevance in rhythmic mechanical stimulation of cell cultures. Front Psychol 2022;13:867191. [DOI: 10.3389/fpsyg.2022.867191] [Reference Citation Analysis]
4 Rogal J, Schlünder K, Loskill P. Developer's Guide to an Organ-on-Chip Model. ACS Biomater Sci Eng 2022. [PMID: 35760397 DOI: 10.1021/acsbiomaterials.1c01536] [Reference Citation Analysis]
5 Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. Adv Mater 2022;34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Tan TH, Liu J, Grapin-Botton A. Mapping and exploring the organoid state space using synthetic biology. Semin Cell Dev Biol 2022:S1084-9521(22)00141-0. [PMID: 35466054 DOI: 10.1016/j.semcdb.2022.04.015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in Organ-on-a-Chip Systems for Modelling Joint Tissue and Osteoarthritic Diseases. Osteoarthritis Cartilage 2022:S1063-4584(22)00717-8. [PMID: 35460872 DOI: 10.1016/j.joca.2022.03.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zhu Y, Sun L, Wang Y, Cai L, Zhang Z, Shang Y, Zhao Y. A Biomimetic Human Lung-on-a-Chip with Colorful Display of Microphysiological Breath. Adv Mater 2022;34:e2108972. [PMID: 35065539 DOI: 10.1002/adma.202108972] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
9 Zoio P, Oliva A. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics 2022;14:682. [PMID: 35336056 DOI: 10.3390/pharmaceutics14030682] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ajalik RE, Alenchery RG, Cognetti JS, Zhang VZ, Mcgrath JL, Miller BL, Awad HA. Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery. Front Bioeng Biotechnol 2022;10:846230. [DOI: 10.3389/fbioe.2022.846230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. Front Med Technol 2021;3:722501. [PMID: 35047952 DOI: 10.3389/fmedt.2021.722501] [Reference Citation Analysis]
12 Paggi CA, Teixeira LM, Le Gac S, Karperien M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol. [DOI: 10.1038/s41584-021-00736-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Nof E, Artzy‐schnirman A, Bhardwaj S, Sabatan H, Waisman D, Hochwald O, Gruber M, Borenstein‐levin L, Sznitman J. Ventilation‐induced epithelial injury drives biological onset of lung trauma in vitro and is mitigated with prophylactic anti‐inflammatory therapeutics. Bioeng Transl Med. [DOI: 10.1002/btm2.10271] [Reference Citation Analysis]
14 Lee SY, Kim D, Lee SH, Sung JH. Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. APL Bioeng 2021;5:041505. [PMID: 34703969 DOI: 10.1063/5.0061896] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Carius P, Dubois A, Ajdarirad M, Artzy-Schnirman A, Sznitman J, Schneider-Daum N, Lehr CM. PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia. Front Bioeng Biotechnol 2021;9:743236. [PMID: 34692661 DOI: 10.3389/fbioe.2021.743236] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models. Adv Healthc Mater 2021;10:e2100961. [PMID: 34302436 DOI: 10.1002/adhm.202100961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
17 Glinkowska Mares A, Feiner-gracia N, Muela Y, Martínez G, Delgado L, Albertazzi L, Pujals S. Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy. Applied Nano 2021;2:289-302. [DOI: 10.3390/applnano2040021] [Reference Citation Analysis]
18 Monteiro MV, Zhang YS, Gaspar VM, Mano JF. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 2021:S0167-7799(21)00194-3. [PMID: 34556340 DOI: 10.1016/j.tibtech.2021.08.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
19 Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021;176:113901. [PMID: 34331989 DOI: 10.1016/j.addr.2021.113901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
20 Kim JH, Lee S, Kang SJ, Choi YW, Choi SY, Park JY, Chang IH. Establishment of Three-Dimensional Bioprinted Bladder Cancer-on-a-Chip with a Microfluidic System Using Bacillus Calmette-Guérin. Int J Mol Sci 2021;22:8887. [PMID: 34445591 DOI: 10.3390/ijms22168887] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
21 Tortorella I, Argentati C, Emiliani C, Martino S, Morena F. The role of physical cues in the development of stem cell-derived organoids. Eur Biophys J 2021. [PMID: 34120215 DOI: 10.1007/s00249-021-01551-3] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
22 Grisanti G, Caprini D, Sinibaldi G, Scognamiglio C, Silvani G, Peruzzi G, Casciola CM. A Microfluidic Platform for Cavitation-Enhanced Drug Delivery. Micromachines (Basel) 2021;12:658. [PMID: 34204968 DOI: 10.3390/mi12060658] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Zhang W, Wang H, Yuan Z, Chu G, Sun H, Yu Z, Liang H, Liu T, Zhou F, Li B. Moderate mechanical stimulation rescues degenerative annulus fibrosus by suppressing caveolin-1 mediated pro-inflammatory signaling pathway. Int J Biol Sci 2021;17:1395-412. [PMID: 33867854 DOI: 10.7150/ijbs.57774] [Cited by in F6Publishing: 7] [Reference Citation Analysis]