1 |
Ntagios M, Nassar H, Dahiya R. Closed-loop direct ink extruder system with multi-part materials mixing. Additive Manufacturing 2023;64:103437. [DOI: 10.1016/j.addma.2023.103437] [Reference Citation Analysis]
|
2 |
Mazzaglia C, Sheng Y, Rodrigues LN, Lei IM, Shields JD, Huang YYS. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Biofabrication 2023;15. [PMID: 36626838 DOI: 10.1088/1758-5090/acb1db] [Reference Citation Analysis]
|
3 |
Moukachar A, Harvey K, Roke E, Sloan K, Pool C, Moola S, Alshukri A, Jarvis D, Crews‐rees P, Mcdermott G, Evans L, Li J, Thomas C, Coulman S, Castell O. Development and Evaluation of a Low‐Cost LEGO 3D Bioprinter: From Building‐Blocks to Building Blocks of Life. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202100868] [Reference Citation Analysis]
|
4 |
Tashman JW, Shiwarski DJ, Feinberg AW. Development of a high-performance open-source 3D bioprinter. Sci Rep 2022;12:22652. [PMID: 36587043 DOI: 10.1038/s41598-022-26809-4] [Reference Citation Analysis]
|
5 |
Fanucci S, Prinsloo E. Development of a low‐cost hydrogel microextrusion printer based on a Kossel delta 3D printer platform. Engineering Reports 2022. [DOI: 10.1002/eng2.12615] [Reference Citation Analysis]
|
6 |
Evranos AE, Ogut AE, Usta YH, Sezer B, Pulat G, Karaman O. 3D Bioprinter Design and Development for Printing of UV Crosslinked Hydrogels under Sterile Condition. 2022 Medical Technologies Congress (TIPTEKNO) 2022. [DOI: 10.1109/tiptekno56568.2022.9960202] [Reference Citation Analysis]
|
7 |
Tashman JW, Shiwarski DJ, Feinberg AW. Development of a High-Performance Open-Source 3D Bioprinter.. [DOI: 10.1101/2022.09.11.507416] [Reference Citation Analysis]
|
8 |
Dávila JL, Manzini BM, Lopes da Fonsêca JH, Mancilla Corzo IJ, Neto PI, Aparecida de Lima Montalvão S, Annichino-bizzacchi JM, Akira d’Ávila M, Lopes da Silva JV. A parameterized g-code compiler for scaffolds 3D bioprinting. Bioprinting 2022;27:e00222. [DOI: 10.1016/j.bprint.2022.e00222] [Reference Citation Analysis]
|
9 |
Chimene D, Deo KA, Thomas J, Dahle L, Mandrona C, Gaharwar AK. Designing Cost-Effective Open-Source Multihead 3D Bioprinters. GEN Biotechnology 2022;1:386-400. [DOI: 10.1089/genbio.2022.0021] [Reference Citation Analysis]
|
10 |
Hsieh S, Anderson JL. Examining the mass loss and thermal properties of 3D printed models produced by fused deposition modeling and stereolithography under elevated temperatures. RPJ 2022. [DOI: 10.1108/rpj-01-2022-0007] [Reference Citation Analysis]
|
11 |
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. Tissue Eng Part B Rev 2022;28:633-64. [PMID: 34210148 DOI: 10.1089/ten.TEB.2021.0012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
12 |
Breideband L, Wächtershäuser KN, Hafa L, Wieland K, Frangakis AS, Stelzer EHK, Pampaloni F. Upgrading a Consumer Stereolithographic 3D Printer to Produce a Physiologically Relevant Model with Human Liver Cancer Organoids. Adv Materials Technologies. [DOI: 10.1002/admt.202200029] [Reference Citation Analysis]
|
13 |
Štiglic AD, Gürer F, Lackner F, Bračič D, Winter A, Gradišnik L, Makuc D, Kargl R, Duarte I, Plavec J, Maver U, Beaumont M, Kleinschek KS, Mohan T. Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. iScience 2022;25:104263. [PMID: 35521531 DOI: 10.1016/j.isci.2022.104263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Mazzaglia C, Sheng Y, Rodrigues LN, Lei IM, Shields JD, Huang YYS. Simulating the Tumor Microenvironment for Immune Cell Interactions via Deployable Extrusion Bioprinting.. [DOI: 10.1101/2022.04.08.487692] [Reference Citation Analysis]
|
15 |
Lovecchio J, Cortesi M, Zani M, Govoni M, Dallari D, Giordano E. Fiber Thickness and Porosity Control in a Biopolymer Scaffold 3D Printed through a Converted Commercial FDM Device. Materials (Basel) 2022;15:2394. [PMID: 35407727 DOI: 10.3390/ma15072394] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
16 |
Dávila JL, Manzini BM, d'Ávila MA, da Silva JVL. Open-source syringe extrusion head for shear-thinning materials 3D printing. RPJ 2022;ahead-of-print. [DOI: 10.1108/rpj-09-2021-0245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Rothbauer M, Eilenberger C, Spitz S, Bachmann BEM, Kratz SRA, Reihs EI, Windhager R, Toegel S, Ertl P. Recent Advances in Additive Manufacturing and 3D Bioprinting for Organs-On-A-Chip and Microphysiological Systems. Front Bioeng Biotechnol 2022;10:837087. [DOI: 10.3389/fbioe.2022.837087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
18 |
Dobres S, Mula G, Sauer J, Zhu D. Applications of 3D Printed Chimeric DNA Biomaterials. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Soykan MN, Şengel T, Ebrahimi A, Kaya M, Altuğ Tasa B, Ghorbanpoor H, Uysal O, Eker Sariboyaci A, Avci H. Four-Dimensional Printing Technology at the Frontier of Advanced Modeling and Applications in Brain Tissue Engineering. Journal of Medical Innovation and Technology 2022. [DOI: 10.51934/jomit.1016838] [Reference Citation Analysis]
|
20 |
Bahnemann J, Grünberger A. Microfluidics in Biotechnology: Overview and Status Quo. Microfluidics in Biotechnology 2022. [DOI: 10.1007/10_2022_206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
21 |
Breideband L, Wächtershäuser KN, Hafa L, Wieland K, Frangakis A, Stelzer EHK, Pampaloni F. Bioprinting the Tumor Microenvironment with an Upgraded Consumer Stereolithographic 3D Printer.. [DOI: 10.1101/2021.12.30.474546] [Reference Citation Analysis]
|
22 |
Diep TT, Ray PP, Edwards AD. Methods for rapid prototyping novel labware: using CAD and desktop 3D printing in the microbiology laboratory. Lett Appl Microbiol 2021. [PMID: 34826147 DOI: 10.1111/lam.13615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
23 |
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021;121:14088-188. [PMID: 34415732 DOI: 10.1021/acs.chemrev.0c01333] [Cited by in Crossref: 36] [Cited by in F6Publishing: 43] [Article Influence: 18.0] [Reference Citation Analysis]
|
24 |
Tashman JW, Shiwarski DJ, Feinberg AW. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting. HardwareX 2021;9:e00170. [PMID: 34746519 DOI: 10.1016/j.ohx.2020.e00170] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
25 |
Engberg A, Stelzl C, Eriksson O, O'Callaghan P, Kreuger J. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting. Sci Rep 2021;11:21547. [PMID: 34732783 DOI: 10.1038/s41598-021-00931-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Gross AR, Santos RS, Sareen D. Accessible, Open-source Hardware and Process Designs for 3D Bioprinting and Culturing Channels Lined with iPSC-derived Vascular Endothelial Cells.. [DOI: 10.1101/2021.10.29.466348] [Reference Citation Analysis]
|
27 |
Garciamendez-mijares CE, Agrawal P, García Martínez G, Cervantes Juarez E, Zhang YS. State-of-art affordable bioprinters: A guide for the DiY community. Applied Physics Reviews 2021;8:031312. [DOI: 10.1063/5.0047818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
28 |
Bharadwaj T, Verma D. Open source bioprinters: Revolutionizing the accessibility of biofabrication. Bioprinting 2021;23:e00155. [DOI: 10.1016/j.bprint.2021.e00155] [Reference Citation Analysis]
|
29 |
Amukarimi S, Mozafari M. 4D bioprinting of tissues and organs. Bioprinting 2021;23:e00161. [DOI: 10.1016/j.bprint.2021.e00161] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
30 |
Wagner M, Karner A, Gattringer P, Buchegger B, Hochreiner A. A super low-cost bioprinter based on DVD-drive components and a raspberry pi as controller. Bioprinting 2021;23:e00142. [DOI: 10.1016/j.bprint.2021.e00142] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
31 |
Blake C, Massey O, Boyd-Moss M, Firipis K, Rifai A, Franks S, Quigley A, Kapsa R, Nisbet DR, Williams RJ. Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioeng 2021;5:031502. [PMID: 34258499 DOI: 10.1063/5.0040764] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
32 |
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Adv Mater 2021;33:e2001085. [PMID: 32537860 DOI: 10.1002/adma.202001085] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 33.5] [Reference Citation Analysis]
|
33 |
Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, Voronov R. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technol 2021;26:333-66. [PMID: 34137286 DOI: 10.1177/24726303211020297] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
34 |
Darwish LR, El-wakad MT, Farag MM. Towards an Ultra-Affordable Three-Dimensional Bioprinter: A Heated Inductive-Enabled Syringe Pump Extrusion Multifunction Module for Open-Source Fused Deposition Modeling Three-Dimensional Printers. Journal of Manufacturing Science and Engineering 2021;143:125001. [DOI: 10.1115/1.4050824] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
35 |
Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, Matamoros M, Sánchez-Ortega ÁJ, Marcos AC, Duarte-León M, Marinaro F, Pagador JB, Sánchez-Margallo FM. Improving Cell Viability and Velocity in μ-Extrusion Bioprinting with a Novel Pre-Incubator Bioprinter and a Standard FDM 3D Printing Nozzle. Materials (Basel) 2021;14:3100. [PMID: 34198815 DOI: 10.3390/ma14113100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021;183:564-88. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 12.5] [Reference Citation Analysis]
|
37 |
Frías-Sánchez AI, Quevedo-Moreno DA, Samandari M, Tavares-Negrete JA, Sánchez-Rodríguez VH, González-Gamboa I, Ponz F, Alvarez MM, Trujillo-de Santiago G. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows. Biofabrication 2021;13. [PMID: 33418551 DOI: 10.1088/1758-5090/abd9d7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
38 |
Krige A, Haluška J, Rova U, Christakopoulos P. Design and implementation of a low cost bio-printer modification, allowing for switching between plastic and gel extrusion. HardwareX 2021;9:e00186. [DOI: 10.1016/j.ohx.2021.e00186] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
39 |
Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release 2021;332:460-92. [DOI: 10.1016/j.jconrel.2021.02.036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
|
40 |
Tiwari AP, Thorat ND, Pricl S, Patil RM, Rohiwal S, Townley H. Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discov Today 2021;26:1574-90. [PMID: 33741496 DOI: 10.1016/j.drudis.2021.03.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
41 |
Gilbert DF, Friedrich O, Lesko C, Hartmann K. Hilfsmittel und Verfahren für zellbasiertes high content imaging. Biospektrum 2021;27:156-159. [DOI: 10.1007/s12268-021-1542-3] [Reference Citation Analysis]
|
42 |
Bharadwaj T, Thomas A, Verma D. Bioprinting. Applications of 3D printing in Biomedical Engineering 2021. [DOI: 10.1007/978-981-33-6888-0_3] [Reference Citation Analysis]
|
43 |
Ioannidis K, Danalatos RI, Champeris Tsaniras S, Kaplani K, Lokka G, Kanellou A, Papachristou DJ, Bokias G, Lygerou Z, Taraviras S. A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation. Front Bioeng Biotechnol 2020;8:580889. [PMID: 33251196 DOI: 10.3389/fbioe.2020.580889] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
44 |
Sanicola HW, Stewart CE, Mueller M, Ahmadi F, Wang D, Powell SK, Sarkar K, Cutbush K, Woodruff MA, Brafman DA. Guidelines for establishing a 3-D printing biofabrication laboratory. Biotechnol Adv 2020;45:107652. [PMID: 33122013 DOI: 10.1016/j.biotechadv.2020.107652] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
45 |
Chansoria P, Schuchard K, Shirwaiker RA. Process hybridization schemes for multiscale engineered tissue biofabrication. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1673. [PMID: 33084240 DOI: 10.1002/wnan.1673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Javaid M, Haleem A. 3D printing applications towards the required challenge of stem cells printing. Clinical Epidemiology and Global Health 2020;8:862-7. [DOI: 10.1016/j.cegh.2020.02.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
47 |
Frías-sánchez AI, Quevedo-moreno DA, Samandari M, Tavares-negrete JA, Sánchez-rodríguez VH, González-gamboa I, Ponz F, Alvarez MM, Trujillo-de Santiago G. Biofabrication of muscle fibers enhanced with plant viral nanoparticles using surface chaotic flows.. [DOI: 10.1101/2020.06.30.181214] [Reference Citation Analysis]
|
48 |
Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020;42:18. [PMID: 32548078 DOI: 10.1186/s40902-020-00263-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
|
49 |
Yang T, Xie P, Wu Z, Liao Y, Chen W, Hao Z, Wang Y, Zhu Z, Teng W. The Injectable Woven Bone-Like Hydrogel to Perform Alveolar Ridge Preservation With Adapted Remodeling Performance After Tooth Extraction. Front Bioeng Biotechnol 2020;8:119. [PMID: 32154241 DOI: 10.3389/fbioe.2020.00119] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Raza MH, Abdullah M, Rehman MU, Mubarak Z, Arshad M. Development of An Extrusion 3D Bioprinter for Bioprinting of Hydrogel Based Biomaterials. 2019 International Conference on Robotics and Automation in Industry (ICRAI) 2019. [DOI: 10.1109/icrai47710.2019.8967361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
51 |
Aschenbrenner D, Friedrich O, Gilbert DF. 3D Printed Lab-on-a-Chip Platform for Chemical Stimulation and Parallel Analysis of Ion Channel Function. Micromachines (Basel) 2019;10:E548. [PMID: 31430884 DOI: 10.3390/mi10080548] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
52 |
Tsymbaliuk V, Medvedovska N. Current state and development prospects of fundamental studies in research institutions of the National Academy of Medical Sciences of Ukraine. Journal NAMSU 2019. [DOI: 10.37621//jnamsu-2019-3-245-252] [Reference Citation Analysis]
|