BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lohasz C, Frey O, Bonanini F, Renggli K, Hierlemann A. Tubing-Free Microfluidic Microtissue Culture System Featuring Gradual, in vivo-Like Substance Exposure Profiles. Front Bioeng Biotechnol 2019;7:72. [PMID: 31001529 DOI: 10.3389/fbioe.2019.00072] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Dufva M. A quantitative meta-analysis: Is organ on a chip cell cultures better than static cell cultures?. [DOI: 10.21203/rs.3.rs-2208798/v1] [Reference Citation Analysis]
2 Rousset N, Lohasz C, Boos JA, Misun PM, Cardes F, Hierlemann A. Circuit-Based Design of Microfluidic Drop Networks. Micromachines (Basel) 2022;13:1124. [PMID: 35888941 DOI: 10.3390/mi13071124] [Reference Citation Analysis]
3 Singh D, Deosarkar SP, Cadogan E, Flemington V, Bray A, Zhang J, Reiserer RS, Schaffer DK, Gerken GB, Britt CM, Werner EM, Gibbons FD, Kostrzewski T, Chambers CE, Davies EJ, Montoya AR, Fok JHL, Hughes D, Fabre K, Wagoner MP, Wikswo JP, Scott CW. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biol 2022;20:e3001624. [DOI: 10.1371/journal.pbio.3001624] [Reference Citation Analysis]
4 Komen J, van Neerven SM, Bossink EGBM, de Groot NE, Nijman LE, van den Berg A, Vermeulen L, van der Meer AD. The Effect of Dynamic, In Vivo-like Oxaliplatin on HCT116 Spheroids in a Cancer-on-Chip Model Is Representative of the Response in Xenografts. Micromachines 2022;13:739. [DOI: 10.3390/mi13050739] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Lohasz C, Loretan J, Sterker D, Görlach E, Renggli K, Argast P, Frey O, Wiesmann M, Wartmann M, Rausch M, Hierlemann A. A Microphysiological Cell-Culturing System for Pharmacokinetic Drug Exposure and High-Resolution Imaging of Arrays of 3D Microtissues. Front Pharmacol 2021;12:785851. [PMID: 35342386 DOI: 10.3389/fphar.2021.785851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bonner MG, Gudapati H, Mou X, Musah S. Microfluidic systems for modeling human development. Development 2022;149:dev199463. [PMID: 35156682 DOI: 10.1242/dev.199463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Petreus T, Cadogan E, Hughes G, Smith A, Pilla Reddy V, Lau A, O'Connor MJ, Critchlow S, Ashford M, Oplustil O'Connor L. Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Commun Biol 2021;4:1001. [PMID: 34429505 DOI: 10.1038/s42003-021-02526-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
8 Komen J, Westerbeek EY, Kolkman RW, Roesthuis J, Lievens C, van den Berg A, van der Meer AD. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device. Lab Chip 2020;20:3167-78. [PMID: 32729598 DOI: 10.1039/d0lc00419g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
9 Komen J, van Neerven SM, van den Berg A, Vermeulen L, van der Meer AD. Mimicking and surpassing the xenograft model with cancer-on-chip technology. EBioMedicine 2021;66:103303. [PMID: 33773183 DOI: 10.1016/j.ebiom.2021.103303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Lohasz C, Bonanini F, Hoelting L, Renggli K, Frey O, Hierlemann A. Predicting Metabolism-Related Drug-Drug Interactions Using a Microphysiological Multitissue System. Adv Biosyst 2020;4:e2000079. [PMID: 33073544 DOI: 10.1002/adbi.202000079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bakhchova L, Jonušauskas L, Andrijec D, Kurachkina M, Baravykas T, Eremin A, Steinmann U. Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems. Materials (Basel) 2020;13:E3076. [PMID: 32664211 DOI: 10.3390/ma13143076] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Renggli K, Frey O. Design and engineering of multiorgan systems. Organ-on-a-chip 2020. [DOI: 10.1016/b978-0-12-817202-5.00012-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. Adv Biosyst 2019;3:e1900018. [PMID: 32627410 DOI: 10.1002/adbi.201900018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]