BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Donaldson AR, Tanase CE, Awuah D, Vasanthi Bathrinarayanan P, Hall L, Nikkhah M, Khademhosseini A, Rose F, Alexander C, Ghaemmaghami AM. Photocrosslinkable Gelatin Hydrogels Modulate the Production of the Major Pro-inflammatory Cytokine, TNF-α, by Human Mononuclear Cells. Front Bioeng Biotechnol 2018;6:116. [PMID: 30283776 DOI: 10.3389/fbioe.2018.00116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews 2020;420:213432. [DOI: 10.1016/j.ccr.2020.213432] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 14.5] [Reference Citation Analysis]
2 Patel DK, Lim KT. Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. Materials (Basel) 2019;12:E2950. [PMID: 31514460 DOI: 10.3390/ma12182950] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
3 Romero-López M, Li Z, Rhee C, Maruyama M, Pajarinen J, O'Donnell B, Lin TH, Lo CW, Hanlon J, Dubowitz R, Yao Z, Bunnell BA, Lin H, Tuan RS, Goodman SB. Macrophage Effects on Mesenchymal Stem Cell Osteogenesis in a Three-Dimensional In Vitro Bone Model. Tissue Eng Part A 2020;26:1099-111. [PMID: 32312178 DOI: 10.1089/ten.TEA.2020.0041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Bray LJ, Hutmacher DW, Bock N. Addressing Patient Specificity in the Engineering of Tumor Models. Front Bioeng Biotechnol 2019;7:217. [PMID: 31572718 DOI: 10.3389/fbioe.2019.00217] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
5 Salvador T, Oliveira MB, Mano JF. Leachable-Free Fabrication of Hydrogel Foams Enabling Homogeneous Viability of Encapsulated Cells in Large-Volume Constructs. Adv Healthc Mater 2020;9:e2000543. [PMID: 32902167 DOI: 10.1002/adhm.202000543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021;13:2590. [PMID: 34451130 DOI: 10.3390/polym13162590] [Reference Citation Analysis]
7 Correia CR, Nadine S, Mano JF. Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices. Adv Funct Mater 2020;30:1908061. [DOI: 10.1002/adfm.201908061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
8 Uehara M, Li X, Sheikhi A, Zandi N, Walker B, Saleh B, Banouni N, Jiang L, Ordikhani F, Dai L, Yonar M, Vohra I, Kasinath V, Orgill DP, Khademhosseini A, Annabi N, Abdi R. Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Sci Rep 2019;9:6535. [PMID: 31024011 DOI: 10.1038/s41598-019-42349-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
9 Awuah D, Ruisinger A, Alobaid M, Mbadugha C, Ghaemmaghami AM. MicroRNA-511-3p Mediated Modulation of the Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Controls LPS-Induced Inflammatory Responses in Human Monocyte Derived DCs. Immuno 2022;2:104-17. [DOI: 10.3390/immuno2010008] [Reference Citation Analysis]
10 Ungemach M, Doll T, Vrana NE. How to Predict Adverse Immune Reactions to Implantable Biomaterials?: Horizon 2020 PANBioRA project – Development of an integrated biomaterial risk assessment testing system. Eur J Immunol 2019;49:517-20. [DOI: 10.1002/eji.201970045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-Dimensional Models as a New Frontier for Studying the Role of Proteoglycans in the Normal and Malignant Breast Microenvironment. Front Cell Dev Biol 2020;8:569454. [PMID: 33163489 DOI: 10.3389/fcell.2020.569454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Firipis K, Boyd-Moss M, Long B, Dekiwadia C, Hoskin W, Pirogova E, Nisbet DR, Kapsa RMI, Quigley AF, Williams RJ. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomater Sci Eng 2021;7:3340-50. [PMID: 34125518 DOI: 10.1021/acsbiomaterials.1c00675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Lin C, Ekblad-Nordberg Å, Michaëlsson J, Götherström C, Hsu CC, Ye H, Johansson J, Rising A, Sundström E, Åkesson E. In Vitro Study of Human Immune Responses to Hyaluronic Acid Hydrogels, Recombinant Spidroins and Human Neural Progenitor Cells of Relevance to Spinal Cord Injury Repair. Cells 2021;10:1713. [PMID: 34359882 DOI: 10.3390/cells10071713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Adv Mater 2021;33:e2100176. [PMID: 34251690 DOI: 10.1002/adma.202100176] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 30.0] [Reference Citation Analysis]
15 Karkanitsa M, Fathi P, Ngo T, Sadtler K. Mobilizing Endogenous Repair Through Understanding Immune Reaction With Biomaterials. Front Bioeng Biotechnol 2021;9:730938. [PMID: 34917594 DOI: 10.3389/fbioe.2021.730938] [Reference Citation Analysis]
16 Rowley AT, Nagalla RR, Wang SW, Liu WF. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater 2019;8:e1801578. [PMID: 30714328 DOI: 10.1002/adhm.201801578] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 19.3] [Reference Citation Analysis]
17 Allijn I, du Preez N, Tasior M, Bansal R, Stamatialis D. One-Step Fabrication of Porous Membrane-Based Scaffolds by Air-Water Interfacial Phase Separation: Opportunities for Engineered Tissues. Membranes 2022;12:453. [DOI: 10.3390/membranes12050453] [Reference Citation Analysis]
18 Monteiro MV, Gaspar VM, Ferreira LP, Mano JF. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Biomater Sci 2020;8:1855-64. [DOI: 10.1039/c9bm02075f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 12.5] [Reference Citation Analysis]
19 Yee C, Dickson K, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022;10:836984. [DOI: 10.3389/fbioe.2022.836984] [Reference Citation Analysis]
20 Sumathy B, Nair PD. Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers. Journal of Biomaterials Science, Polymer Edition 2020;31:869-94. [DOI: 10.1080/09205063.2020.1725861] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Groen WMGAC, Utomo L, Castilho M, Gawlitta D, Malda J, Weeren PRV, Levato R, Korthagen NM. Impact of Endotoxins in Gelatine Hydrogels on Chondrogenic Differentiation and Inflammatory Cytokine Secretion In Vitro. Int J Mol Sci 2020;21:E8571. [PMID: 33202964 DOI: 10.3390/ijms21228571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]