BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Sevillano CA, Marques DBD, Pires MFA, de Freitas C, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva MVGB, Machado MA. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J Dairy Sci 2019;102:8148-58. [PMID: 31279558 DOI: 10.3168/jds.2018-15305] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Cheruiyot EK, Haile-mariam M, Cocks BG, Pryce JE. Improving Genomic Selection for Heat Tolerance in Dairy Cattle: Current Opportunities and Future Directions. Front Genet 2022;13:894067. [DOI: 10.3389/fgene.2022.894067] [Reference Citation Analysis]
2 Bohlouli M, Halli K, Yin T, Gengler N, König S. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle. J Dairy Sci 2022:S0022-0302(22)00045-5. [PMID: 35094857 DOI: 10.3168/jds.2021-21152] [Reference Citation Analysis]
3 Gourdine JL, Rauw WM, Gilbert H, Poullet N. The Genetics of Thermoregulation in Pigs: A Review. Front Vet Sci 2021;8:770480. [PMID: 34966808 DOI: 10.3389/fvets.2021.770480] [Reference Citation Analysis]
4 Luna-Nevárez G, Pendleton AL, Luna-Ramirez RI, Limesand SW, Reyna-Granados JR, Luna-Nevárez P. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J Therm Biol 2021;101:103095. [PMID: 34879913 DOI: 10.1016/j.jtherbio.2021.103095] [Reference Citation Analysis]
5 Halli K, Vanvanhossou SF, Bohlouli M, König S, Yin T. Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One 2021;16:e0258216. [PMID: 34648531 DOI: 10.1371/journal.pone.0258216] [Reference Citation Analysis]
6 Cheruiyot EK, Haile-Mariam M, Cocks BG, MacLeod IM, Xiang R, Pryce JE. New loci and neuronal pathways for resilience to heat stress in cattle. Sci Rep 2021;11:16619. [PMID: 34404823 DOI: 10.1038/s41598-021-95816-8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Silpa MV, König S, Sejian V, Malik PK, Nair MRR, Fonseca VFC, Maia ASC, Bhatta R. Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models. Front Vet Sci 2021;8:625189. [PMID: 33996959 DOI: 10.3389/fvets.2021.625189] [Reference Citation Analysis]
8 Luo H, Li X, Hu L, Xu W, Chu Q, Liu A, Guo G, Liu L, Brito LF, Wang Y. Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. J Dairy Sci 2021;104:4441-51. [PMID: 33589260 DOI: 10.3168/jds.2020-18725] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhang GW, Wang L, Huang D, Chen H, Li B, Wu Y, Zhang J, Jiang A, Zhang J, Zuo F. Inheritance patterns of leukocyte gene expression under heat stress in F1 hybrid cattle and their parents. J Dairy Sci 2020;103:10321-31. [PMID: 32896393 DOI: 10.3168/jds.2020-18410] [Reference Citation Analysis]
10 Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020;154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
11 Franco-Martínez L, Martínez-Subiela S, Cerón JJ, Tecles F, Eckersall PD, Oravcova K, Tvarijonaviciute A. Biomarkers of health and welfare: A One Health perspective from the laboratory side. Res Vet Sci 2020;128:299-307. [PMID: 31869596 DOI: 10.1016/j.rvsc.2019.12.012] [Reference Citation Analysis]