BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dalvie D, Kalgutkar AS, Chen W. Practical approaches to resolving reactive metabolite liabilities in early discovery. Drug Metabolism Reviews 2015;47:56-70. [DOI: 10.3109/03602532.2014.984813] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. In: Chen M, Will Y, editors. Drug-Induced Liver Toxicity. New York: Springer; 2018. pp. 477-96. [DOI: 10.1007/978-1-4939-7677-5_23] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Zhou Y, Oh MH, Kim YJ, Kim EY, Kang J, Chung S, Ju C, Kim WK, Lee K. Metabolism and Pharmacokinetics of SP-8356, a Novel (1S)-(-)-Verbenone Derivative, in Rats and Dogs and Its Implications in Humans. Molecules 2020;25:E1775. [PMID: 32294954 DOI: 10.3390/molecules25081775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 He C, Wan H. Drug metabolism and metabolite safety assessment in drug discovery and development. Expert Opinion on Drug Metabolism & Toxicology 2018;14:1071-85. [DOI: 10.1080/17425255.2018.1519546] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
4 Whitby LR, Obach RS, Simon GM, Hayward MM, Cravatt BF. Quantitative Chemical Proteomic Profiling of the in Vivo Targets of Reactive Drug Metabolites. ACS Chem Biol 2017;12:2040-50. [PMID: 28636309 DOI: 10.1021/acschembio.7b00346] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sodhi JK, Delarosa EM, Halladay JS, Driscoll JP, Mulder T, Dansette PM, Khojasteh SC. Inhibitory Effects of Trapping Agents of Sulfur Drug Reactive Intermediates against Major Human Cytochrome P450 Isoforms. Int J Mol Sci 2017;18:E1553. [PMID: 28726718 DOI: 10.3390/ijms18071553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Brito Palma B, Fisher CW, Rueff J, Kranendonk M. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites. Chem Res Toxicol 2016;29:747-56. [DOI: 10.1021/acs.chemrestox.5b00455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
7 Zhang C, Crawford JJ, Landry ML, Chen H, Kenny JR, Khojasteh SC, Lee W, Ma S, Young WB. Strategies to Mitigate the Bioactivation of Aryl Amines. Chem Res Toxicol 2020;33:1950-9. [PMID: 32508087 DOI: 10.1021/acs.chemrestox.0c00138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metabolism Reviews 2019;51:453-97. [DOI: 10.1080/03602532.2019.1655570] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang Z, Fang Y, Rock D, Ma J. Rapid screening and characterization of glutathione-trapped reactive metabolites using a polarity switch-based approach on a high-resolution quadrupole orbitrap mass spectrometer. Anal Bioanal Chem 2018;410:1595-606. [DOI: 10.1007/s00216-017-0814-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Nishijo N, Hayama T, Tomita R, Yamaguchi M, Fujioka T. Application of a fluorous derivatization method for characterization of glutathione-trapped reactive metabolites with liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A 2020;1622:461160. [PMID: 32450990 DOI: 10.1016/j.chroma.2020.461160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gómez-Lechón MJ, Tolosa L, Donato MT. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opin Drug Metab Toxicol 2017;13:137-48. [PMID: 27671376 DOI: 10.1080/17425255.2017.1238459] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
12 Kaddah MMY, Billig S, Oehme R, Birkemeyer C. Bio-activation of simeprevir in liver microsomes and characterization of its glutathione conjugates by liquid chromatography coupled to ultrahigh-resolution quadrupole time-of-flight mass spectrometry. J Chromatogr A 2021;1645:462095. [PMID: 33857675 DOI: 10.1016/j.chroma.2021.462095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kim JH, Choi WG, Lee S, Lee HS. Revisiting the Metabolism and Bioactivation of Ketoconazole in Human and Mouse Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Int J Mol Sci 2017;18:E621. [PMID: 28335386 DOI: 10.3390/ijms18030621] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
14 Słoczyńska K, Koczurkiewicz P, Piska K, Powroźnik B, Wójcik-Pszczoła K, Klaś K, Wyszkowska-Kolatko M, Pękala E. Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules 2019;24:E2505. [PMID: 31323993 DOI: 10.3390/molecules24132505] [Reference Citation Analysis]
15 Gorbunov A, Bardin A, Ilyushonok S, Kovach J, Petrenko A, Sukhodolov N, Krasnov K, Krasnov N, Zorin I, Obornev A, Babakov V, Radilov A, Podolskaya E. Multiwell photocatalytic microreactor device integrating drug biotransformation modeling and sample preparation on a MALDI target. Microchemical Journal 2022;178:107362. [DOI: 10.1016/j.microc.2022.107362] [Reference Citation Analysis]
16 Labarre A, Stille JK, Patrascu MB, Martins A, Pottel J, Moitessier N. Docking Ligands into Flexible and Solvated Macromolecules. 8. Forming New Bonds─Challenges and Opportunities. J Chem Inf Model 2022. [PMID: 35133156 DOI: 10.1021/acs.jcim.1c00701] [Reference Citation Analysis]
17 Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 2016;36:752-68. [PMID: 26691983 DOI: 10.1002/jat.3277] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
18 Wang Q, Liu H, Slavsky M, Fitzgerald M, Lu C, O'Shea T. A high-throughput glutathione trapping assay with combined high sensitivity and specificity in high-resolution mass spectrometry by applying product ion extraction and data-dependent neutral loss. J Mass Spectrom 2019;54:158-66. [PMID: 30537107 DOI: 10.1002/jms.4320] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Ji C, Guha M, Zhu X, Whritenour J, Hemkens M, Tse S, Walker GS, Evans E, Khan NK, Finkelstein MB, Callegari E, Obach RS. Enzalutamide and Apalutamide: In Vitro Chemical Reactivity Studies and Activity in a Mouse Drug Allergy Model. Chem Res Toxicol 2020;33:211-22. [DOI: 10.1021/acs.chemrestox.9b00247] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]