1 |
Mészáros M, Phan THM, Vigh JP, Porkoláb G, Kocsis A, Páli EK, Polgár TF, Walter FR, Bolognin S, Schwamborn JC, Jan JS, Deli MA, Veszelka S. Targeting Human Endothelial Cells with Glutathione and Alanine Increases the Crossing of a Polypeptide Nanocarrier through a Blood-Brain Barrier Model and Entry to Human Brain Organoids. Cells 2023;12. [PMID: 36766845 DOI: 10.3390/cells12030503] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Nielsen SSE, Holst MR, Langthaler K, Bruun EH, Brodin B, Nielsen MS. Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells. Fluids Barriers CNS 2023;20:2. [PMID: 36624498 DOI: 10.1186/s12987-022-00404-1] [Reference Citation Analysis]
|
3 |
Alam P, Holst MR, Lauritsen L, Nielsen J, Nielsen SSE, Jensen PH, Brewer JR, Otzen DE, Nielsen MS. Polarized α-synuclein trafficking and transcytosis across brain endothelial cells via Rab7-decorated carriers. Fluids Barriers CNS 2022;19. [DOI: 10.1186/s12987-022-00334-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Lajoie JM, Katt ME, Waters EA, Herrin BR, Shusta EV. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-09962-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Hussain MWA, Jahangir S, Ghosh B, Yesmin F, Anis A, Satil SN, Anwar F, Rashid MH. Exosomes for Regulation of Immune Responses and Immunotherapy. JNT 2022;3:55-85. [DOI: 10.3390/jnt3010005] [Reference Citation Analysis]
|
6 |
Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood) 2022;:15353702221080745. [PMID: 35243912 DOI: 10.1177/15353702221080745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Banks WA, Noonan C, Rhea EM. Evidence for an alternative insulin transporter at the blood-brain barrier. Aging Pathobiol Ther 2022;4:100-8. [PMID: 36644126 DOI: 10.31491/apt.2022.12.100] [Reference Citation Analysis]
|
8 |
Omidi Y, Omidian H, Kwon Y, Castejon A. Blood–brain barrier and nanovesicles for brain-targeting drug delivery. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00007-9] [Reference Citation Analysis]
|
9 |
Alam P, Holst MR, Lauritsen L, Nielsen J, Nielsen SSE, Jensen PH, Brewer JR, Otzen DE, Nielsen MS. Polarized α-synuclein trafficking and transcytosis across Brain Endothelial Cells via Rab7-decorated carriers.. [DOI: 10.1101/2021.12.21.473642] [Reference Citation Analysis]
|
10 |
Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS Appl Mater Interfaces 2021;13:39018-29. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Gericke B, Borsdorf S, Wienböker I, Noack A, Noack S, Löscher W. Similarities and differences in the localization, trafficking, and function of P-glycoprotein in MDR1-EGFP-transduced rat versus human brain capillary endothelial cell lines. Fluids Barriers CNS 2021;18:36. [PMID: 34344390 DOI: 10.1186/s12987-021-00266-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
12 |
Heidarzadeh M, Gürsoy-Özdemir Y, Kaya M, Eslami Abriz A, Zarebkohan A, Rahbarghazi R, Sokullu E. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls. Cell Biosci 2021;11:142. [PMID: 34294165 DOI: 10.1186/s13578-021-00650-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
|
13 |
Kucharz K, Kristensen K, Johnsen KB, Lund MA, Lønstrup M, Moos T, Andresen TL, Lauritzen MJ. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun 2021;12:4121. [PMID: 34226541 DOI: 10.1038/s41467-021-24323-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
|
14 |
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021;:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
|
15 |
Deli M, Kovac A. Brain Barriers as Targets in Pathologies and Therapy. Curr Pharm Des 2020;26:1403-4. [PMID: 32410548 DOI: 10.2174/138161282613200506134601] [Reference Citation Analysis]
|
16 |
Löscher W, Gericke B. Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020;12:E966. [PMID: 33066604 DOI: 10.3390/pharmaceutics12100966] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
17 |
Holst MR, Nielsen SSE, Nielsen MS. Mapping Receptor Antibody Endocytosis and Trafficking in Brain Endothelial Cells. Methods Mol Biol 2021;2367:193-205. [PMID: 32813236 DOI: 10.1007/7651_2020_312] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
18 |
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. CPD 2020;26:1438-47. [DOI: 10.2174/1381612826666200325110014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
|