BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020;9:13-30. [PMID: 32161726 DOI: 10.2147/ITT.S241064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Li J, Hu K, Zhou Q, Chen X, He J, Yin S, Chi Y, Liao X, Xiao Y, Qin H, Zheng Z, Chen J. Screening Novel Vaccine Candidates for Leishmania Donovani by Combining Differential Proteomics and Immunoinformatics Analysis. Front Immunol 2022;13:902066. [DOI: 10.3389/fimmu.2022.902066] [Reference Citation Analysis]
2 Dube A, Egieyeh S, Balogun M. A Perspective on Nanotechnology and COVID-19 Vaccine Research and Production in South Africa. Viruses 2021;13:2095. [PMID: 34696526 DOI: 10.3390/v13102095] [Reference Citation Analysis]
3 Specht CA, Homan EJ, Lee CK, Mou Z, Gomez CL, Hester MM, Abraham A, Rus F, Ostroff GR, Levitz SM. Protection of Mice against Experimental Cryptococcosis by Synthesized Peptides Delivered in Glucan Particles. mBio 2022;:e0336721. [PMID: 35089095 DOI: 10.1128/mbio.03367-21] [Reference Citation Analysis]
4 Khalid K, Irum S, Ullah SR, Andleeb S. In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. Int J Pept Res Ther 2022;28:16. [PMID: 34873398 DOI: 10.1007/s10989-021-10316-7] [Reference Citation Analysis]
5 Atapour A, Ghalamfarsa F, Naderi S, Hatam G. Designing of a Novel Fusion Protein Vaccine Candidate Against Human Visceral Leishmaniasis (VL) Using Immunoinformatics and Structural Approaches. Int J Pept Res Ther 2021;:1-14. [PMID: 33935610 DOI: 10.1007/s10989-021-10218-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Soltan MA, Eldeen MA, Elbassiouny N, Mohamed I, El-Damasy DA, Fayad E, Abu Ali OA, Raafat N, Eid RA, Al-Karmalawy AA. Proteome Based Approach Defines Candidates for Designing a Multitope Vaccine against the Nipah Virus. Int J Mol Sci 2021;22:9330. [PMID: 34502239 DOI: 10.3390/ijms22179330] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
7 Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform Med Unlocked 2020;21:100478. [PMID: 33200088 DOI: 10.1016/j.imu.2020.100478] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
8 Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021;9:363. [PMID: 33807386 DOI: 10.3390/biomedicines9040363] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Vijayakumar S. Harnessing Fuzzy Rule Based System for Screening Major Histocompatibility Complex Class I Peptide Epitopes from the Whole Proteome: An Implementation on the Proteome of Leishmania donovani. J Comput Biol 2022. [PMID: 35404099 DOI: 10.1089/cmb.2021.0464] [Reference Citation Analysis]
10 Devi SS, Kardam V, Dubey KD, Dwivedi M. Deciphering the immunogenic T-cell epitopes from spike protein of SARS-CoV-2 concerning the diverse population of India. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2037462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021;8:697194. [PMID: 34805327 DOI: 10.3389/fvets.2021.697194] [Reference Citation Analysis]
12 Das SK, Paul M, Behera BC, Thatoi H. Current status of COVID-19 vaccination: safety and liability concern for children, pregnant and lactating women. Expert Rev Vaccines 2022. [PMID: 35313785 DOI: 10.1080/14760584.2022.2056025] [Reference Citation Analysis]
13 Kumar N, Sood D, Chandra R. Vaccine Formulation and Optimization for Human Herpes Virus-5 through an Immunoinformatics Framework. ACS Pharmacol Transl Sci 2020;3:1318-29. [PMID: 33344905 DOI: 10.1021/acsptsci.0c00139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
14 Ghandadi M. An Immunoinformatic Strategy to Develop New Mycobacterium tuberculosis Multi-epitope Vaccine. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10406-0] [Reference Citation Analysis]
15 Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virology. [DOI: 10.2217/fvl-2021-0105] [Reference Citation Analysis]
16 Ezediuno LO, Onile OS, Oladipo EK, Majolagbe ON, Jimah EM, Senbadejo TY. Designing multi-epitope subunit vaccine for ocular trachoma infection using Chlamydia trachomatis polymorphic membrane proteins G. Informatics in Medicine Unlocked 2021;26:100764. [DOI: 10.1016/j.imu.2021.100764] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Nicolás-morales ML, Luisa-sanjuan A, Gutiérrez-torres M, Vences-velázquez A, Ortuño-pineda C, Espinoza-rojo M, Navarro-tito N, Cortés-sarabia K. Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines 2022;10:1249. [DOI: 10.3390/vaccines10081249] [Reference Citation Analysis]
18 Law H, Venturi V, Kelleher A, Munier CML. Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020;21:E8524. [PMID: 33198297 DOI: 10.3390/ijms21228524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-Based COVID-19 Vaccines: An Adaptable Technology against the Threat of New Variants. Vaccines (Basel) 2021;9:1409. [PMID: 34960155 DOI: 10.3390/vaccines9121409] [Reference Citation Analysis]
20 Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2021:bbab456. [PMID: 34788381 DOI: 10.1093/bib/bbab456] [Reference Citation Analysis]
21 Shahbazi S, Sabzi S, Noori Goodarzi N, Fereshteh S, Bolourchi N, Mirzaie B, Badmasti F. Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microbial Pathogenesis 2022. [DOI: 10.1016/j.micpath.2022.105425] [Reference Citation Analysis]
22 Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022;:113264. [PMID: 35341759 DOI: 10.1016/j.jim.2022.113264] [Reference Citation Analysis]
23 Robleda-Castillo R, Ros-Lucas A, Martinez-Peinado N, Alonso-Padilla J. An Overview of Current Uses and Future Opportunities for Computer-Assisted Design of Vaccines for Neglected Tropical Diseases. Adv Appl Bioinform Chem 2021;14:25-47. [PMID: 33623396 DOI: 10.2147/AABC.S258759] [Reference Citation Analysis]
24 Omoniyi AA, Adebisi SS, Musa SA, Nzalak JO, Bauchi ZM, Bako KW, Olatomide OD, Zachariah R, Nyengaard JR. In silico design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Sci Rep 2022;12:8736. [PMID: 35610299 DOI: 10.1038/s41598-022-12651-1] [Reference Citation Analysis]
25 Soltan MA, Eldeen MA, Elbassiouny N, Kamel HL, Abdelraheem KM, El-Gayyed HA, Gouda AM, Sheha MF, Fayad E, Ali OAA, Ghany KAE, El-Damasy DA, Darwish KM, Elhady SS, Sileem AE. In Silico Designing of a Multitope Vaccine against Rhizopus microsporus with Potential Activity against Other Mucormycosis Causing Fungi. Cells 2021;10:3014. [PMID: 34831237 DOI: 10.3390/cells10113014] [Reference Citation Analysis]
26 Opriessnig T, Mattei AA, Karuppannan AK, Halbur PG. Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021;7:1. [PMID: 33397477 DOI: 10.1186/s40813-020-00179-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Queiroz AMV, Oliveira JWF, Moreno CJ, Guérin DMA, Silva MS. VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021;9:220. [PMID: 33807516 DOI: 10.3390/vaccines9030220] [Reference Citation Analysis]
28 Rowaiye AB, Onuh OA, Oli AN, Okpalefe OA, Oni S, Nwankwo EJ. The pandemic COVID-19: a tale of viremia, cellular oxidation and immune dysfunction. Pan Afr Med J 2020;36:188. [PMID: 32952832 DOI: 10.11604/pamj.2020.36.188.23476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Dong R, Chu Z, Yu F, Zha Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front Immunol 2020;11:1784. [PMID: 32849643 DOI: 10.3389/fimmu.2020.01784] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
30 Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 2022;13:949779. [DOI: 10.3389/fimmu.2022.949779] [Reference Citation Analysis]
31 Yılmaz Çolak Ç. Computational Design of a Multi-epitope Vaccine Against Clostridium chauvoei: An Immunoinformatics Approach. Int J Pept Res Ther 2021;:1-11. [PMID: 34493934 DOI: 10.1007/s10989-021-10279-9] [Reference Citation Analysis]
32 Barghash RF, Fawzy IM, Chandrasekar V, Singh AV, Katha U, Mandour AA. In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. Coatings 2021;11:1273. [DOI: 10.3390/coatings11111273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Beiranvand S, Doosti A, Mirzaei SA. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. Infect Genet Evol 2021;96:105138. [PMID: 34793968 DOI: 10.1016/j.meegid.2021.105138] [Reference Citation Analysis]
34 Kangabam R, Sahoo S, Ghosh A, Roy R, Silla Y, Misra N, Suar M. Next-generation computational tools and resources for coronavirus research: From detection to vaccine discovery. Comput Biol Med 2021;128:104158. [PMID: 33301953 DOI: 10.1016/j.compbiomed.2020.104158] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Marques da Silva W, Seyffert N, Silva A, Azevedo V. A journey through the Corynebacterium pseudotuberculosis proteome promotes insights into its functional genome. PeerJ 2021;9:e12456. [PMID: 35036114 DOI: 10.7717/peerj.12456] [Reference Citation Analysis]
36 Ferreira CS, Martins YC, Souza RC, Vasconcelos ATR. EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ 2021;9:e12548. [PMID: 34909278 DOI: 10.7717/peerj.12548] [Reference Citation Analysis]