BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine 2019;14:4333-51. [PMID: 31354264 DOI: 10.2147/IJN.S209431] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 23.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang F, Cai X, Shen Y, Meng L. Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materials 2023;23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Reference Citation Analysis]
2 Wang Z, Agrawal P, Zhang YS. 3D Printing and Bioprinting Strategies Applied Toward Orthopedics. Biofabrication for Orthopedics 2022. [DOI: 10.1002/9783527831371.ch3] [Reference Citation Analysis]
3 Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. Medicine in Novel Technology and Devices 2022;16:100168. [DOI: 10.1016/j.medntd.2022.100168] [Reference Citation Analysis]
4 Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1051678] [Reference Citation Analysis]
5 Kang X, Zhang X, Gao X, Hao D, Li T, Xu Z. Bioprinting for bone tissue engineering. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1036375] [Reference Citation Analysis]
6 Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03331-y] [Reference Citation Analysis]
7 Moazzam M, Shehzad A, Sultanova D, Mukasheva F, Trifonov A, Berillo D, Akilbekova D. Macroporous 3D printed structures for regenerative medicine applications. Bioprinting 2022. [DOI: 10.1016/j.bprint.2022.e00254] [Reference Citation Analysis]
8 Beckmann J, Barrett D, Thienpont E. Cutting-Edge Approaches in Arthroplasty: Before, during and after Surgery. J Pers Med 2022;12. [PMID: 36294810 DOI: 10.3390/jpm12101671] [Reference Citation Analysis]
9 Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. Reactive and Functional Polymers 2022;179:105374. [DOI: 10.1016/j.reactfunctpolym.2022.105374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang Y, Lu S, Zheng J, Liang L, Stylianou A. Advances in Latest Application Status, Challenges, and Future Development Direction of Electrospinning Technology in the Biomedical. Journal of Nanomaterials 2022;2022:1-18. [DOI: 10.1155/2022/3791908] [Reference Citation Analysis]
11 Li X, He L, Li N, He D. Curcumin loaded hydrogel with anti-inflammatory activity to promote cartilage regeneration in immunocompetent animals. Journal of Biomaterials Science, Polymer Edition 2022. [DOI: 10.1080/09205063.2022.2113290] [Reference Citation Analysis]
12 Tabriz AG, Douroumis D. Recent advances in 3D printing for wound healing: A systematic review. Journal of Drug Delivery Science and Technology 2022;74:103564. [DOI: 10.1016/j.jddst.2022.103564] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022;50:3000605221117212. [PMID: 35983666 DOI: 10.1177/03000605221117212] [Reference Citation Analysis]
14 Pereira CL, Lamghari M, Sarmento B. Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomater 2022:S1742-7061(22)00436-6. [PMID: 35902038 DOI: 10.1016/j.actbio.2022.07.033] [Reference Citation Analysis]
15 Jiang Y, Lin H, Shao Z, Chen X, Li W, Ni Y. Reconstruction of an orbital defect in rabbits using a silk fibroin-bone microparticle complex. Int J Artif Organs 2022;:3913988221113354. [PMID: 35876430 DOI: 10.1177/03913988221113354] [Reference Citation Analysis]
16 Peng Y, Li J, Lin H, Tian S, Liu S, Pu F, Zhao L, Ma K, Qing X, Shao Z, Yp, Zs, Xq, Yp, Yp, Xq, Jl, St, Yp, Xq, Jl, St, Sl, Fp, Lz, Km, Xq, Yp, Xq, Hs, St, Yp, Jl, Hl, St, Lz, Fp, Sl, Zs, Xq. Endogenous repair theory enriches construction strategies for orthopaedic biomaterials: a narrative review. Biomater Transl 2021;2:343-60. [PMID: 35837417 DOI: 10.12336/biomatertransl.2021.04.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Chen J, Wang H, Wu Y, Liu Y, Shi Y, Chen C, Hou H, Zha Z, Zheng X, Wu T. Biocompatible octacalcium phosphate/sodium alginate/silk fibroin composite scaffolds for bone regeneration. Materials Today Communications 2022;31:103312. [DOI: 10.1016/j.mtcomm.2022.103312] [Reference Citation Analysis]
18 Wang H, Yan Y, Lan H, Wei N, Zheng Z, Wu L, Jaspers RT, Wu G, Pathak JL. Notoginsenoside R1 Promotes Migration, Adhesin, Spreading, and Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. Molecules 2022;27:3403. [PMID: 35684342 DOI: 10.3390/molecules27113403] [Reference Citation Analysis]
19 Du C, Huang W. Progress and prospects of nanocomposite hydrogels in bone tissue engineering. Nanocomposites 2022;8:102-24. [DOI: 10.1080/20550324.2022.2076025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022. [PMID: 35585479 DOI: 10.1002/term.3309] [Reference Citation Analysis]
21 Yang Z, Yi P, Liu Z, Zhang W, Mei L, Feng C, Tu C, Li Z. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022;10:865770. [DOI: 10.3389/fbioe.2022.865770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wang J, Xiao L, Wang W, Zhang D, Ma Y, Zhang Y, Wang X. The Auxiliary Role of Heparin in Bone Regeneration and its Application in Bone Substitute Materials. Front Bioeng Biotechnol 2022;10:837172. [DOI: 10.3389/fbioe.2022.837172] [Reference Citation Analysis]
23 Dzulkharnien NSF, Rohani R. A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. Nanomaterials (Basel) 2022;12:1629. [PMID: 35630851 DOI: 10.3390/nano12101629] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 He J, You D, Li Q, Wang J, Ding S, He X, Zheng H, Ji Z, Wang X, Ye X, Liu C, Kang H, Xu X, Xu X, Wang H, Yu M. Osteogenesis-Inducing Chemical Cues Enhance the Mechanosensitivity of Human Mesenchymal Stem Cells for Osteogenic Differentiation on a Microtopographically Patterned Surface. Adv Sci (Weinh) 2022;9:e2200053. [PMID: 35373921 DOI: 10.1002/advs.202200053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ayala-ham A, Aguilar-medina M, León-félix J, Romero-quintana JG, Bermúdez M, López-gutierrez J, Jiménez-gastélum G, Avendaño-félix M, Lizárraga-verdugo E, Castillo-ureta H, López-camarillo C, Ramos-payan R. Extracellular matrix hydrogel derived from bovine bone is biocompatible in vitro and in vivo. BME 2022. [DOI: 10.3233/bme-211387] [Reference Citation Analysis]
26 Liu N, Zhang H, Ni X, Liu T, Jiang N. A Review of Composition–Structure–Function Properties and Tissue Engineering Strategies of Articular Cartilage: Compare Condyle Process and Knee Joint. Adv Eng Mater. [DOI: 10.1002/adem.202200304] [Reference Citation Analysis]
27 He B, Zhang M, Yin L, Quan Z, Ou Y, Huang W. bFGF-incorporated composite biomaterial for bone regeneration. Materials & Design 2022;215:110469. [DOI: 10.1016/j.matdes.2022.110469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Rodrigues J, Sarmento B, Pereira CL. Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models. In vitro models 2022;1:5-27. [DOI: 10.1007/s44164-022-00008-x] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022;25:99. [PMID: 35088882 DOI: 10.3892/mmr.2022.12615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Chen X, Han S, Wu W, Wu Z, Yuan Y, Wu J, Liu C. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. Small. [DOI: 10.1002/smll.202106824] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
31 Wang LL, Zhang JX, Li Y, Zhao SN. Positive Osteocalcin Expressions in Periodontium Regenerated by Nano Bioceramics after Orthodontic Tooth Movement. KEM 2022;905:277-281. [DOI: 10.4028/www.scientific.net/kem.905.277] [Reference Citation Analysis]
32 Dar TB, Bhat AR, Biteghe FAN, Bhat AR, Malindi Z. Nanotechnology and Nanomedicine. Fundamentals and Advances in Medical Biotechnology 2022. [DOI: 10.1007/978-3-030-98554-7_11] [Reference Citation Analysis]
33 Cui Y, Li H, Li Y, Mao L. Novel insights into nanomaterials for immunomodulatory bone regeneration. Nanoscale Adv 2022;4:334-52. [DOI: 10.1039/d1na00741f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
34 Parin FN, Terzioğlu P. Electrospun Porous Biobased Polymer Mats for Biomedical Applications. Advanced Functional Porous Materials 2022. [DOI: 10.1007/978-3-030-85397-6_18] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Lima FS, Matos LF, Pacheco IK, Reis F, Câmara JVF, Pierote JJA, Matos JM, Ribeiro A, Moura W, Fialho AC. Scaffold based on castor oil as an osteoconductive matrix in bone repair: biocompatibility analysis. Polímeros 2022;32:e2022003. [DOI: 10.1590/0104-1428.210018] [Reference Citation Analysis]
36 Patni AP, Macrin D, Maiti D, Devi A. 3D and 4D Nanoprinting for Tissue Regeneration. Application of Nanoparticles in Tissue Engineering 2022. [DOI: 10.1007/978-981-16-6198-3_4] [Reference Citation Analysis]
37 Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, Wang C, Ouyang Z, Li X, Xue J, Wang W. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med 2021;33:2. [PMID: 34940930 DOI: 10.1007/s10856-021-06609-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene‐Based Materials in Bone Tissue Engineaering. Global Challenges. [DOI: 10.1002/gch2.202100107] [Reference Citation Analysis]
39 Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Kondarage AI, Gayani B, Poologasundarampillai G, Nommeots-nomm A, Lee P, Lalitharatne T, Nanayakkara N, Jones J, Karunaratne A. Detection and Tracking Volumes of Interest in 3D Printed Tissue Engineering Scaffolds using 4D Imaging Modalities. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2021. [DOI: 10.1109/embc46164.2021.9630587] [Reference Citation Analysis]
41 Beketov EE, Isaeva EV, Yakovleva ND, Demyashkin GA, Arguchinskaya NV, Kisel AA, Lagoda TS, Malakhov EP, Kharlov VI, Osidak EO, Domogatsky SP, Ivanov SA, Shegay PV, Kaprin AD. Bioprinting of Cartilage with Bioink Based on High-Concentration Collagen and Chondrocytes. Int J Mol Sci 2021;22:11351. [PMID: 34768781 DOI: 10.3390/ijms222111351] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
42 Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021;7:4718-35. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
43 Pedrero SG, Llamas-Sillero P, Serrano-López J. A Multidisciplinary Journey towards Bone Tissue Engineering. Materials (Basel) 2021;14:4896. [PMID: 34500986 DOI: 10.3390/ma14174896] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
44 Zhang N, Xing X, Li P. Preparation of Bio-Inert Carbon Nanofiber Scaffold and Its Effect of Postoperative Injury Nursing and Repair of Bone Tissue. sci adv mater 2021;13:1488-97. [DOI: 10.1166/sam.2021.4026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Erezuma I, Eufrasio-da-Silva T, Golafshan N, Deo K, Mishra YK, Castilho M, Gaharwar AK, Leeuwenburgh S, Dolatshahi-Pirouz A, Orive G. Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders. Adv Healthc Mater 2021;10:e2100217. [PMID: 34185438 DOI: 10.1002/adhm.202100217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
46 Wang M, Li W, Tang G, Garciamendez-Mijares CE, Zhang YS. Engineering (Bio)Materials through Shrinkage and Expansion. Adv Healthc Mater 2021;10:e2100380. [PMID: 34137213 DOI: 10.1002/adhm.202100380] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
47 Iranmanesh P, Ehsani A, Khademi A, Asefnejad A, Shahriari S, Soleimani M, Ghadiri Nejad M, Saber-samandari S, Khandan A. Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Med. [DOI: 10.1007/s11242-021-01618-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Wang Y, Zhang S, Wang J. Photo-crosslinkable hydrogel and its biological applications. Chinese Chemical Letters 2021;32:1603-14. [DOI: 10.1016/j.cclet.2020.11.073] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
49 Pei YA, Dong Y, He TC, Li WJ, Toh WS, Pei M. Editorial: Extracellular Vesicle Treatment, Epigenetic Modification and Cell Reprogramming to Promote Bone and Cartilage Regeneration. Front Bioeng Biotechnol 2021;9:678014. [PMID: 33968918 DOI: 10.3389/fbioe.2021.678014] [Reference Citation Analysis]
50 Fan D, Liu H, Zhang Z, Su M, Yuan Z, Lin Y, Yang S, Li W, Zhang X. Resveratrol and Angiogenin-2 Combined With PEGDA/TCS Hydrogel for the Targeted Therapy of Hypoxic Bone Defects via Activation of the Autophagy Pathway. Front Pharmacol 2021;12:618724. [PMID: 33927615 DOI: 10.3389/fphar.2021.618724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
51 Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers (Basel) 2021;13:563. [PMID: 33668617 DOI: 10.3390/polym13040563] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 33.0] [Reference Citation Analysis]
52 Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021;9:12. [PMID: 33574225 DOI: 10.1038/s41413-020-00131-z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 43.0] [Reference Citation Analysis]
53 Wang T, Zheng J, Hu T, Zhang H, Fu K, Yin R, Zhang W. Three-Dimensional Printing of Calcium Carbonate/Hydroxyapatite Scaffolds at Low Temperature for Bone Tissue Engineering. 3D Printing and Additive Manufacturing 2021;8:1-13. [DOI: 10.1089/3dp.2020.0140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
54 Villalobos-vega D, Vázquez-vázquez FC, Pozos-guillén A, Avendaño E, Vega-baudrit JR, Álvarez-pérez MA, Chavarría-bolaños D. Characterization and Biocompatibility of a Polylactic Acid (PLA) 3D/Printed Scaffold. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-61985-5_11] [Reference Citation Analysis]
55 Sun K, Li R, Li H, Fan M, Li H. Analysis and Demonstration of a Scaffold Finite Element Model for Cartilage Tissue Engineering. ACS Omega 2020;5:32411-9. [PMID: 33376878 DOI: 10.1021/acsomega.0c04378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
56 Arthur A, Gronthos S. Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. Int J Mol Sci 2020;21:E9759. [PMID: 33371306 DOI: 10.3390/ijms21249759] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 25.0] [Reference Citation Analysis]
57 Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020;8:598607. [PMID: 33381499 DOI: 10.3389/fbioe.2020.598607] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]
58 Fattahi F. Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. Int Nano Lett 2021;11:1-23. [DOI: 10.1007/s40089-020-00318-6] [Reference Citation Analysis]
59 Alonzo M, Primo FA, Kumar SA, Mudloff JA, Dominguez E, Fregoso G, Ortiz N, Weiss WM, Joddar B. Bone tissue engineering techniques, advances and scaffolds for treatment of bone defects. Curr Opin Biomed Eng 2021;17:100248. [PMID: 33718692 DOI: 10.1016/j.cobme.2020.100248] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
60 Wang Z, Hui A, Zhao H, Ye X, Zhang C, Wang A, Zhang C. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration. Int J Nanomedicine 2020;15:6945-60. [PMID: 33061361 DOI: 10.2147/IJN.S254094] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
61 Rao NN, Pardiwala DN. Recent advances and future trends in knee arthroscopy. JASSM 2020;1:98-109. [DOI: 10.25259/jassm_15_2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Javaid M, Haleem A. Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma 2020;11:S485-90. [PMID: 32774016 DOI: 10.1016/j.jcot.2020.04.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
63 Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater 2020;101:26-42. [PMID: 31672585 DOI: 10.1016/j.actbio.2019.10.038] [Cited by in Crossref: 130] [Cited by in F6Publishing: 142] [Article Influence: 65.0] [Reference Citation Analysis]
64 Sharma D, Ferguson M, Zhao F. A step-by-step protocol for generating human fibroblast cell-derived completely biological extracellular matrix scaffolds. Methods in Cell Biology 2020. [DOI: 10.1016/bs.mcb.2019.10.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Haleem A, Javaid M, Khan RH, Suman R. 3D printing applications in bone tissue engineering. J Clin Orthop Trauma 2020;11:S118-24. [PMID: 31992931 DOI: 10.1016/j.jcot.2019.12.002] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 27.3] [Reference Citation Analysis]