BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moreira-Filho CA, Bando SY, Bertonha FB, Silva FN, Costa Lda F, Ferreira LR, Furlanetto G, Chacur P, Zerbini MC, Carneiro-Sampaio M. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016;7:7497-533. [PMID: 26848775 DOI: 10.18632/oncotarget.7120] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Biselli JM, Zampieri BL, Biselli-chicote PM, de Souza JES, Bürger MC, da Silva Jr WA, Goloni-bertollo EM, Pavarino ÉC. Differential microRNA expression profile in blood of children with Down syndrome suggests a role in immunological dysfunction. Human Cell. [DOI: 10.1007/s13577-022-00672-x] [Reference Citation Analysis]
2 Moreira-filho CA, Bando SY, Bertonha FB, Carneiro-sampaio M. Transcriptomics of Neonatal and Infant Human Thymus. Transcriptomics in Health and Disease 2022. [DOI: 10.1007/978-3-030-87821-4_4] [Reference Citation Analysis]
3 Moreira-filho CA, Bando SY, Bertonha FB, Silva FN, da Fontoura Costa L. Methods for Gene Co-expression Network Visualization and Analysis. Transcriptomics in Health and Disease 2022. [DOI: 10.1007/978-3-030-87821-4_6] [Reference Citation Analysis]
4 Illouz T, Biragyn A, Iulita MF, Flores-Aguilar L, Dierssen M, De Toma I, Antonarakis SE, Yu E, Herault Y, Potier MC, Botté A, Roper R, Sredni B, London J, Mobley W, Strydom A, Okun E. Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Front Immunol 2021;12:621440. [PMID: 34248930 DOI: 10.3389/fimmu.2021.621440] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
5 Marcovecchio GE, Ferrua F, Fontana E, Beretta S, Genua M, Bortolomai I, Conti A, Montin D, Cascarano MT, Bergante S, D'Oria V, Giamberti A, Amodio D, Cancrini C, Carotti A, Di Micco R, Merelli I, Bosticardo M, Villa A. Premature Senescence and Increased Oxidative Stress in the Thymus of Down Syndrome Patients. Front Immunol 2021;12:669893. [PMID: 34140950 DOI: 10.3389/fimmu.2021.669893] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 De Toma I, Dierssen M. Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Sci Rep 2021;11:1930. [PMID: 33479353 DOI: 10.1038/s41598-021-81451-w] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
7 Verstegen RHJ, Kusters MAA. Inborn Errors of Adaptive Immunity in Down Syndrome. J Clin Immunol 2020;40:791-806. [PMID: 32638194 DOI: 10.1007/s10875-020-00805-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
8 Vieira SE, Bando SY, Lauterbach GDP, Moreira-Filho CA. Human Leukocyte Transcriptional Response to SARS-CoV-2 Infection. Clinics (Sao Paulo) 2020;75:e2078. [PMID: 32578831 DOI: 10.6061/clinics/2020/e2078] [Reference Citation Analysis]
9 Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020;10:E697. [PMID: 32365821 DOI: 10.3390/biom10050697] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 27.5] [Reference Citation Analysis]
10 Panagaki T, Randi EB, Szabo C. Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts. Biomolecules 2020;10:E653. [PMID: 32340322 DOI: 10.3390/biom10040653] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
11 Bertonha FB, Bando SY, Ferreira LR, Chaccur P, Vinhas C, Zerbini MCN, Carneiro-Sampaio MM, Moreira-Filho CA. Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus. PLoS One 2020;15:e0227547. [PMID: 32294112 DOI: 10.1371/journal.pone.0227547] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Chai M, Su L, Hao X, Zhang M, Zheng L, Bi J, Han X, Gao C. Identification of a thymus microRNA‑mRNA regulatory network in Down syndrome. Mol Med Rep 2019;20:2063-72. [PMID: 31257513 DOI: 10.3892/mmr.2019.10433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Moreira-filho CA, Bando SY, Bertonha FB, Carneiro-sampaio M. Functional Genomics of the Infant Human Thymus: AIRE and Minipuberty. Thymus Transcriptome and Cell Biology 2019. [DOI: 10.1007/978-3-030-12040-5_10] [Reference Citation Analysis]
14 Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 2018;19:534. [PMID: 30567491 DOI: 10.1186/s12859-018-2486-6] [Cited by in Crossref: 372] [Cited by in F6Publishing: 393] [Article Influence: 93.0] [Reference Citation Analysis]
15 Moreira-Filho CA, Bando SY, Bertonha FB, Ferreira LR, Vinhas CF, Oliveira LHB, Zerbini MCN, Furlanetto G, Chaccur P, Carneiro-Sampaio M. Minipuberty and Sexual Dimorphism in the Infant Human Thymus. Sci Rep 2018;8:13169. [PMID: 30177771 DOI: 10.1038/s41598-018-31583-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
16 Ge SX, Son EW. Gaining insights from RNA-Seq data using iDEP.. [DOI: 10.1101/148411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]