BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Merrouche Y, Fabre J, Cure H, Garbar C, Fuselier C, Bastid J, Antonicelli F, Al-Daccak R, Bensussan A, Giustiniani J. IL-17E synergizes with EGF and confers in vitro resistance to EGFR-targeted therapies in TNBC cells. Oncotarget 2016;7:53350-61. [PMID: 27462789 DOI: 10.18632/oncotarget.10804] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Faucheux L, Grandclaudon M, Perrot-Dockès M, Sirven P, Berger F, Hamy AS, Fourchotte V, Vincent-Salomon A, Mechta-Grigoriou F, Reyal F, Scholer-Dahirel A, Guillot-Delost M, Soumelis V. A multivariate Th17 metagene for prognostic stratification in T cell non-inflamed triple negative breast cancer. Oncoimmunology 2019;8:e1624130. [PMID: 31428522 DOI: 10.1080/2162402X.2019.1624130] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
2 Song X, Wei C, Li X. The potential role and status of IL-17 family cytokines in breast cancer. Int Immunopharmacol 2021;95:107544. [PMID: 33740640 DOI: 10.1016/j.intimp.2021.107544] [Reference Citation Analysis]
3 Chandler A, Bartelstein MK, Fujiwara T, Antonescu CR, Healey JH, Vaynrub M. Anti-IL17 antibody Secukinumab therapy is associated with ossification in giant cell tumor of bone: a case report of pathologic similarities and therapeutic potential similar to Denosumab. BMC Musculoskelet Disord 2021;22:320. [PMID: 33794838 DOI: 10.1186/s12891-021-04182-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Nagel S, MacLeod RAF, Pommerenke C, Meyer C, Kaufmann M, Drexler HG. NKL homeobox gene NKX2-2 is aberrantly expressed in Hodgkin lymphoma. Oncotarget 2018;9:37480-96. [PMID: 30680064 DOI: 10.18632/oncotarget.26459] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
5 Jiang S, Meng L, Chen X, Liu H, Zhang J, Chen F, Zheng J, Liu H, Wang F, Hu J, Li Z. MEX3A promotes triple negative breast cancer proliferation and migration via the PI3K/AKT signaling pathway. Experimental Cell Research 2020;395:112191. [DOI: 10.1016/j.yexcr.2020.112191] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
6 Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021;64:2382-418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Garbar C, Mascaux C, Giustiniani J, Merrouche Y, Bensussan A. Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci Rep 2017;7:7201. [PMID: 28775276 DOI: 10.1038/s41598-017-07489-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
8 You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021;14:589. [PMID: 34207383 DOI: 10.3390/ph14060589] [Reference Citation Analysis]
9 Mani S, Hande A, Boichuk S. Triple-Negative Breast Cancer: the Current Aspects of Pathogenesis and Therapies. BioNanoSci . [DOI: 10.1007/s12668-022-00991-1] [Reference Citation Analysis]
10 Pan T, Mao T, Yang H, Wang H, Wang Y. Silencing of TGIF sensitizes MDA-MB-231 human breast cancer cells to cisplatin-induced apoptosis. Exp Ther Med 2018;15:2978-84. [PMID: 29456703 DOI: 10.3892/etm.2018.5780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Ghorbani M, Pourjafar F, Saffari M, Asgari Y. Paclitaxel resistance resulted in a stem-like state in triple-negative breast cancer: A systems biology approach. Meta Gene 2020;26:100800. [DOI: 10.1016/j.mgene.2020.100800] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021;21:481-99. [PMID: 34083781 DOI: 10.1038/s41568-021-00363-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
13 Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med 2020;217:e20190456. [PMID: 31727783 DOI: 10.1084/jem.20190456] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
14 Fabre JAS, Giustinniani J, Garbar C, Merrouche Y, Antonicelli F, Bensussan A. The Interleukin-17 Family of Cytokines in Breast Cancer. Int J Mol Sci 2018;19:E3880. [PMID: 30518157 DOI: 10.3390/ijms19123880] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
15 Chang CW, Chen YS, Chen CC, Chan IO, Chen CC, Sheu SJ, Lin TW, Chou SH, Liu CJ, Lee TC, Lo JF. Targeting cancer initiating cells by promoting cell differentiation and restoring chemosensitivity via dual inactivation of STAT3 and src activity using an active component of antrodia cinnamomea mycelia. Oncotarget 2016;7:73016-31. [PMID: 27682875 DOI: 10.18632/oncotarget.12194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
16 Gowhari Shabgah A, Amir A, Gardanova ZR, Olegovna Zekiy A, Thangavelu L, Ebrahimi Nik M, Ahmadi M, Gholizadeh Navashenaq J. Interleukin-25: New perspective and state-of-the-art in cancer prognosis and treatment approaches. Cancer Med 2021;10:5191-202. [PMID: 34128588 DOI: 10.1002/cam4.4060] [Cited by in F6Publishing: 2] [Reference Citation Analysis]