BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Altered colonic sensory and barrier functions by CRF: roles of TLR4 and IL-1. Journal of Endocrinology 2018;239:241-52. [DOI: 10.1530/joe-18-0441] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Sun Y, Li H, Liu L, Bai X, Wu L, Shan J, Sun X, Wang Q, Guo Y. A Novel Mast Cell Stabilizer JM25-1 Rehabilitates Impaired Gut Barrier by Targeting the Corticotropin-Releasing Hormone Receptors. Pharmaceuticals (Basel) 2022;16. [PMID: 36678544 DOI: 10.3390/ph16010047] [Reference Citation Analysis]
2 Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ohhira M, Okumura T. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats. Biochem Pharmacol 2022;206:115331. [PMID: 36330948 DOI: 10.1016/j.bcp.2022.115331] [Reference Citation Analysis]
3 Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022;13. [DOI: 10.3389/fneur.2022.1015175] [Reference Citation Analysis]
4 Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022;28:517-30. [PMID: 36250359 DOI: 10.5056/jnm22100] [Reference Citation Analysis]
5 Okumura T, Nozu T, Ishioh M, Igarashi S, Funayama T, Kumei S, Ohhira M. Oxytocin acts centrally in the brain to improve leaky gut through the vagus nerve and a cannabinoid signaling in rats. Physiol Behav 2022;254:113914. [PMID: 35839845 DOI: 10.1016/j.physbeh.2022.113914] [Reference Citation Analysis]
6 Elbadawi M, Ammar RM, Rabini S, Klauck SM, Efferth T. Modulation of Intestinal Corticotropin-Releasing Hormone Signaling by the Herbal Preparation STW 5-II: Possible Mechanisms for Irritable Bowel Syndrome Management. Pharmaceuticals 2022;15:1121. [DOI: 10.3390/ph15091121] [Reference Citation Analysis]
7 Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022. [DOI: 10.1016/j.npep.2022.102248] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022;16:837166. [DOI: 10.3389/fncel.2022.837166] [Reference Citation Analysis]
9 Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides 2021;147:170705. [PMID: 34822913 DOI: 10.1016/j.peptides.2021.170705] [Reference Citation Analysis]
10 Sun H, Ma Y, An S, Wang Z. Altered gene expression signatures by calcitonin gene-related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol Motil 2021;33:e14073. [PMID: 33382180 DOI: 10.1111/nmo.14073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Biomed Pharmacother 2021;139:111649. [PMID: 33957565 DOI: 10.1016/j.biopha.2021.111649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020;11:509681. [PMID: 33262709 DOI: 10.3389/fpsyt.2020.509681] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
13 Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020;32:e13833. [PMID: 32155308 DOI: 10.1111/nmo.13833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
14 Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Losartan improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2020;32:e13819. [PMID: 32056324 DOI: 10.1111/nmo.13819] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
15 Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020;13:1756284820910630. [PMID: 32313554 DOI: 10.1177/1756284820910630] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
16 Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019;9:19603. [PMID: 31862976 DOI: 10.1038/s41598-019-56132-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
17 Arie H, Nozu T, Miyagishi S, Ida M, Izumo T, Shibata H. Grape Seed Extract Eliminates Visceral Allodynia and Colonic Hyperpermeability Induced by Repeated Water Avoidance Stress in Rats. Nutrients 2019;11:E2646. [PMID: 31689935 DOI: 10.3390/nu11112646] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]