BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020;16:e9610. [PMID: 32715618 DOI: 10.15252/msb.20209610] [Cited by in Crossref: 212] [Cited by in F6Publishing: 249] [Article Influence: 106.0] [Reference Citation Analysis]
Number Citing Articles
1 Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol 2021;17:135-49. [DOI: 10.1038/s41574-020-00462-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 41.0] [Reference Citation Analysis]
2 Bouwman KM, Tomris I, Turner HL, van der Woude R, Shamorkina TM, Bosman GP, Rockx B, Herfst S, Snijder J, Haagmans BL, Ward AB, Boons GJ, de Vries RP. Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathog 2021;17:e1009282. [PMID: 33556147 DOI: 10.1371/journal.ppat.1009282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
3 Hua S, Yang Y, Zou D, Li J, Yan K, Xu Y, Jiang X, Rong X, Ye D. COVID-19 and metabolic comorbidities: An update on emerging evidences for optimal therapies. Biomed Pharmacother 2021;140:111685. [PMID: 34015585 DOI: 10.1016/j.biopha.2021.111685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol 2021;12:720109. [PMID: 34367190 DOI: 10.3389/fimmu.2021.720109] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res 2020;226:57-69. [PMID: 32827705 DOI: 10.1016/j.trsl.2020.08.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 33.5] [Reference Citation Analysis]
6 Boroujeni ME, Simani L, Bluyssen HAR, Samadikhah HR, Zamanlui Benisi S, Hassani S, Akbari Dilmaghani N, Fathi M, Vakili K, Mahmoudiasl GR, Abbaszadeh HA, Hassani Moghaddam M, Abdollahifar MA, Aliaghaei A. Inflammatory Response Leads to Neuronal Death in Human Post-Mortem Cerebral Cortex in Patients with COVID-19. ACS Chem Neurosci 2021;12:2143-50. [PMID: 34100287 DOI: 10.1021/acschemneuro.1c00111] [Reference Citation Analysis]
7 Lee IT, Nakayama T, Wu CT, Goltsev Y, Jiang S, Gall PA, Liao CK, Shih LC, Schürch CM, McIlwain DR, Chu P, Borchard NA, Zarabanda D, Dholakia SS, Yang A, Kim D, Chen H, Kanie T, Lin CD, Tsai MH, Phillips KM, Kim R, Overdevest JB, Tyler MA, Yan CH, Lin CF, Lin YT, Bau DT, Tsay GJ, Patel ZM, Tsou YA, Tzankov A, Matter MS, Tai CJ, Yeh TH, Hwang PH, Nolan GP, Nayak JV, Jackson PK. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat Commun 2020;11:5453. [PMID: 33116139 DOI: 10.1038/s41467-020-19145-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 24.5] [Reference Citation Analysis]
8 Hu K, Lin L, Liang Y, Shao X, Hu Z, Luo H, Lei M. COVID-19: risk factors for severe cases of the Delta variant. Aging (Albany NY) 2021;13:23459-70. [PMID: 34710058 DOI: 10.18632/aging.203655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020;11:583006. [PMID: 33101215 DOI: 10.3389/fendo.2020.583006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Shukla N, Roelle SM, Suzart VG, Bruchez AM, Matreyek KA. Mutants of human ACE2 differentially promote SARS-CoV and SARS-CoV-2 spike mediated infection. PLoS Pathog 2021;17:e1009715. [PMID: 34270613 DOI: 10.1371/journal.ppat.1009715] [Reference Citation Analysis]
11 Seymen CM. The other side of COVID-19 pandemic: Effects on male fertility. J Med Virol 2021;93:1396-402. [PMID: 33200417 DOI: 10.1002/jmv.26667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hilpert K, Mikut R. Is There a Connection Between Gut Microbiome Dysbiosis Occurring in COVID-19 Patients and Post-COVID-19 Symptoms? Front Microbiol 2021;12:732838. [PMID: 34603261 DOI: 10.3389/fmicb.2021.732838] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 García-Ayllón MS, Moreno-Pérez O, García-Arriaza J, Ramos-Rincón JM, Cortés-Gómez MÁ, Brinkmalm G, Andrés M, León-Ramírez JM, Boix V, Gil J, Zetterberg H, Esteban M, Merino E, Sáez-Valero J. Plasma ACE2 species are differentially altered in COVID-19 patients. FASEB J 2021;35:e21745. [PMID: 34191346 DOI: 10.1096/fj.202100051R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wilkins J, Al-Inizi S. Premature ovarian insufficiency secondary to COVID-19 infection: An original case report. Int J Gynaecol Obstet 2021;154:179-80. [PMID: 33896002 DOI: 10.1002/ijgo.13719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Settanni CR, Ianiro G, Ponziani FR, Bibbò S, Segal JP, Cammarota G, Gasbarrini A. COVID-19 as a trigger of irritable bowel syndrome: A review of potential mechanisms. World J Gastroenterol 2021; 27(43): 7433-7445 [PMID: 34887641 DOI: 10.3748/wjg.v27.i43.7433] [Reference Citation Analysis]
16 Mauriz E, Lechuga LM. Current Trends in SPR Biosensing of SARS-CoV-2 Entry Inhibitors. Chemosensors 2021;9:330. [DOI: 10.3390/chemosensors9120330] [Reference Citation Analysis]
17 Madjunkov M, Dviri M, Librach C. A comprehensive review of the impact of COVID-19 on human reproductive biology, assisted reproduction care and pregnancy: a Canadian perspective. J Ovarian Res 2020;13:140. [PMID: 33246480 DOI: 10.1186/s13048-020-00737-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
18 Li F, Lu H, Zhang Q, Li X, Wang T, Liu Q, Yang Q, Qiang L. Impact of COVID-19 on female fertility: a systematic review and meta-analysis protocol. BMJ Open 2021;11:e045524. [PMID: 33632754 DOI: 10.1136/bmjopen-2020-045524] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Golde TE, Giasson BI, Xia Y. Precision therapeutic targets for COVID-19. Virol J 2021;18:66. [PMID: 33781287 DOI: 10.1186/s12985-021-01526-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ghannoum MA, Ford M, Bonomo RA, Gamal A, McCormick TS. A Microbiome-Driven Approach to Combating Depression During the COVID-19 Pandemic. Front Nutr 2021;8:672390. [PMID: 34504858 DOI: 10.3389/fnut.2021.672390] [Reference Citation Analysis]
21 Geravandi S, Mahmoudi-Aznaveh A, Azizi Z, Maedler K, Ardestani A. SARS-CoV-2 and pancreas: a potential pathological interaction? Trends Endocrinol Metab 2021:S1043-2760(21)00157-0. [PMID: 34373155 DOI: 10.1016/j.tem.2021.07.004] [Reference Citation Analysis]
22 Harlow J, Dallner M, Nasheri N. Protective Effect of Food Against Inactivation of Human Coronavirus OC43 by Gastrointestinal Fluids. Food Environ Virol 2022. [PMID: 35320506 DOI: 10.1007/s12560-022-09520-5] [Reference Citation Analysis]
23 Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Chem Biol Interact 2021;351:109738. [PMID: 34740598 DOI: 10.1016/j.cbi.2021.109738] [Reference Citation Analysis]
24 Kehinde IA, Egbeyemi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. J Biomol Struct Dyn 2022;:1-10. [PMID: 35220925 DOI: 10.1080/07391102.2022.2043938] [Reference Citation Analysis]
25 Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021;11:3318. [PMID: 33558635 DOI: 10.1038/s41598-021-82833-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract 2021;228:153647. [PMID: 34749207 DOI: 10.1016/j.prp.2021.153647] [Reference Citation Analysis]
27 Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021;10:272. [PMID: 33578849 DOI: 10.3390/antiox10020272] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
28 Verma S, Joshi CS, Silverstein RB, He M, Carter EB, Mysorekar IU. SARS-CoV-2 colonization of maternal and fetal cells of the human placenta promotes alteration of local renin-angiotensin system. Med (N Y) 2021;2:575-590.e5. [PMID: 33870242 DOI: 10.1016/j.medj.2021.04.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kumar Barman R, Mukhopadhyay A, Maulik U, Das S. A network biology approach to identify crucial host targets for COVID-19. Methods 2022. [DOI: 10.1016/j.ymeth.2022.03.016] [Reference Citation Analysis]
30 Ekanger CT, Zhou F, Bohan D, Lotsberg ML, Ramnefjell M, Hoareau L, Røsland GV, Lu N, Aanerud M, Gärtner F, Salminen PR, Bentsen M, Halvorsen T, Ræder H, Akslen LA, Langeland N, Cox R, Maury W, Stuhr LEB, Lorens JB, Engelsen AST. Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Front Cell Infect Microbiol 2022;12:841447. [DOI: 10.3389/fcimb.2022.841447] [Reference Citation Analysis]
31 Vilella F, Wang W, Moreno I, Roson B, Quake SR, Simon C. Single-cell RNA Sequencing of SARS-CoV-2 Cell Entry Factors in the Preconceptional Human Endometrium. Hum Reprod 2021:deab183. [PMID: 34329437 DOI: 10.1093/humrep/deab183] [Reference Citation Analysis]
32 Morselli S, Sebastianelli A, Liaci A, Zaccaro C, Pecoraro A, Nicoletti R, Manera A, Bisegna C, Campi R, Pollini S, Antonelli A, Lagi F, Coppi M, Baldi E, Marchiani S, Nicolò S, Torcia M, Annunziato F, Maggi M, Vignozzi L, Bartoloni A, Rossolini GM, Serni S, Gacci M. Male reproductive system inflammation after healing from coronavirus disease 2019. Andrology 2021. [PMID: 34889528 DOI: 10.1111/andr.13138] [Reference Citation Analysis]
33 Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021;14:eabd0334. [PMID: 33436497 DOI: 10.1126/scisignal.abd0334] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
34 Gurumurthy CB, Quadros RM, Richardson GP, Poluektova LY, Mansour SL, Ohtsuka M. Genetically modified mouse models to help fight COVID-19. Nat Protoc 2020;15:3777-87. [PMID: 33106680 DOI: 10.1038/s41596-020-00403-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
35 Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology (Basel) 2020;10:1. [PMID: 33375175 DOI: 10.3390/biology10010001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
36 Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2.Br J Nutr. 2021;1-10. [PMID: 33468263 DOI: 10.1017/S0007114521000246] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Aguiar JA, Tremblay BJ, Mansfield MJ, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A, Revill S, Miller MS, Carlsten C, Organ L, Joseph C, John A, Hanson P, Austin RC, McManus BM, Jenkins G, Mossman K, Ask K, Doxey AC, Hirota JA. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020;56:2001123. [PMID: 32675206 DOI: 10.1183/13993003.01123-2020] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 29.5] [Reference Citation Analysis]
38 Prabhakara C, Godbole R, Sil P, Jahnavi S, Gulzar SE, van Zanten TS, Sheth D, Subhash N, Chandra A, Shivaraj A, Panikulam P, U I, Nuthakki VK, Puthiyapurayil TP, Ahmed R, Najar AH, Lingamallu SM, Das S, Mahajan B, Vemula P, Bharate SB, Singh PP, Vishwakarma R, Guha A, Sundaramurthy V, Mayor S. Strategies to target SARS-CoV-2 entry and infection using dual mechanisms of inhibition by acidification inhibitors. PLoS Pathog 2021;17:e1009706. [PMID: 34252168 DOI: 10.1371/journal.ppat.1009706] [Reference Citation Analysis]
39 Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, Groen N, Ravelli RBG, Duimel HQ, Demmers JAA, Verjans GMGM, Koopmans MPG, Muraro MJ, Peters PJ, Clevers H, Haagmans BL. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J 2021;40:e105912. [PMID: 33283287 DOI: 10.15252/embj.2020105912] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 22.0] [Reference Citation Analysis]
40 Zhang Z, Zhang G, Guo M, Tao W, Liu X, Wei H, Jin T, Zhang Y, Zhu S. The Potential Role of an Aberrant Mucosal Immune Response to SARS-CoV-2 in the Pathogenesis of IgA Nephropathy. Pathogens 2021;10:881. [PMID: 34358031 DOI: 10.3390/pathogens10070881] [Reference Citation Analysis]
41 Drucker DJ. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metab 2021;33:479-98. [PMID: 33529600 DOI: 10.1016/j.cmet.2021.01.016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 30.0] [Reference Citation Analysis]
42 Winger A, Caspari T. The Spike of Concern-The Novel Variants of SARS-CoV-2. Viruses 2021;13:1002. [PMID: 34071984 DOI: 10.3390/v13061002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
43 Cao Y, Xu X, Kitanovski S, Song L, Wang J, Hao P, Hoffmann D. Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Front Immunol 2021;12:656433. [PMID: 34122413 DOI: 10.3389/fimmu.2021.656433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021;12:728896. [PMID: 34616396 DOI: 10.3389/fimmu.2021.728896] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Kulkarni PG, Sakharkar A, Banerjee T. Understanding the role of nACE2 in neurogenic hypertension among COVID-19 patients. Hypertens Res 2021. [PMID: 34848886 DOI: 10.1038/s41440-021-00800-4] [Reference Citation Analysis]
46 Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2021:bbab456. [PMID: 34788381 DOI: 10.1093/bib/bbab456] [Reference Citation Analysis]
47 Sarker MT, Hasan AQF, Rafi MO, Hossain MJ, El-mageed HRA, Elsapagh RM, Capasso R, Emran TB. A Comprehensive Overview of the Newly Emerged COVID-19 Pandemic: Features, Origin, Genomics, Epidemiology, Treatment, and Prevention. Biologics 2021;1:357-83. [DOI: 10.3390/biologics1030021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Maiuolo J, Mollace R, Gliozzi M, Musolino V, Carresi C, Paone S, Scicchitano M, Macrì R, Nucera S, Bosco F, Scarano F, Zito MC, Ruga S, Tavernese A, Mollace V. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection. Int J Mol Sci 2020;21:E9309. [PMID: 33291346 DOI: 10.3390/ijms21239309] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
49 Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021;27:28-33. [PMID: 33442016 DOI: 10.1038/s41591-020-01202-8] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 60.0] [Reference Citation Analysis]
50 Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne) 2020;11:582870. [PMID: 33042029 DOI: 10.3389/fendo.2020.582870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
51 Coate KC, Cha J, Shrestha S, Wang W, Gonçalves LM, Almaça J, Kapp ME, Fasolino M, Morgan A, Dai C, Saunders DC, Bottino R, Aramandla R, Jenkins R, Stein R, Kaestner KH, Vahedi G, Consortium H, Brissova M, Powers AC. SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 are Expressed in the Pancreas but are Not Enriched in Islet Endocrine Cells. bioRxiv 2020:2020. [PMID: 33106804 DOI: 10.1101/2020.08.31.275719] [Cited by in Crossref: 39] [Cited by in F6Publishing: 46] [Article Influence: 19.5] [Reference Citation Analysis]
52 Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020;370:856-60. [PMID: 33082293 DOI: 10.1126/science.abd2985] [Cited by in Crossref: 440] [Cited by in F6Publishing: 432] [Article Influence: 220.0] [Reference Citation Analysis]
53 Niazi Tabar A, Sojoudi K, Henduei H, Azizi H. Review of Sertoli cell dysfunction caused by COVID-19 that could affect male fertility. Zygote 2021;:1-8. [PMID: 34176527 DOI: 10.1017/S0967199421000320] [Reference Citation Analysis]
54 Rando HM, MacLean AL, Lee AJ, Lordan R, Ray S, Bansal V, Skelly AN, Sell E, Dziak JJ, Shinholster L, D'Agostino McGowan L, Ben Guebila M, Wellhausen N, Knyazev S, Boca SM, Capone S, Qi Y, Park Y, Mai D, Sun Y, Boerckel JD, Brueffer C, Byrd JB, Kamil JP, Wang J, Velazquez R, Szeto GL, Barton JP, Goel RR, Mangul S, Lubiana T, Gitter A, Greene CS; COVID-19 Review Consortium Vikas Bansal, John P. Barton, Simina M. Boca, Joel D. Boerckel, Christian Brueffer, James Brian Byrd, Stephen Capone, Shikta Das, Anna Ada Dattoli, John J. Dziak, Jeffrey M. Field, Soumita Ghosh, Anthony Gitter, Rishi Raj Goel, Casey S. Greene, Marouen Ben Guebila, Daniel S. Himmelstein, Fengling Hu, Nafisa M. Jadavji, Jeremy P. Kamil, Sergey Knyazev, Likhitha Kolla, Alexandra J. Lee, Ronan Lordan, Tiago Lubiana, Temitayo Lukan, Adam L. MacLean, David Mai, Serghei Mangul, David Manheim, Lucy D’Agostino McGowan, Amruta Naik, YoSon Park, Dimitri Perrin, Yanjun Qi, Diane N. Rafizadeh, Bharath Ramsundar, Halie M. Rando, Sandipan Ray, Michael P. Robson, Vincent Rubinetti, Elizabeth Sell, Lamonica Shinholster, Ashwin N. Skelly, Yuchen Sun, Yusha Sun, Gregory L. Szeto, Ryan Velazquez, Jinhui Wang, Nils Wellhausen, . Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. mSystems 2021;6:e0009521. [PMID: 34698547 DOI: 10.1128/mSystems.00095-21] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Xiong S, Zhang L, Richner JM, Class J, Rehman J, Malik AB. Interleukin-1RA Mitigates SARS-CoV-2-Induced Inflammatory Lung Vascular Leakage and Mortality in Humanized K18-hACE-2 Mice. Arterioscler Thromb Vasc Biol 2021;41:2773-85. [PMID: 34496633 DOI: 10.1161/ATVBAHA.121.316925] [Reference Citation Analysis]
56 Greco S, Fabbri N, Bella A, Bonsi B, Parini S, Rocchi C, Giaccari S, Gavioli M, Passaro A, Feo CV. COVID-19 inpatients with gastrointestinal onset: sex and care needs' differences in the district of Ferrara, Italy. BMC Infect Dis 2021;21:739. [PMID: 34344331 DOI: 10.1186/s12879-021-06476-y] [Reference Citation Analysis]
57 Mohaghegh S, Motie P, Motamedian SR. Role of ACE2 polymorphism in COVID-19: impact of age. Clin Chem Lab Med 2021. [PMID: 33984877 DOI: 10.1515/cclm-2020-1877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 van der Vaart J, Lamers MM, Haagmans BL, Clevers H. Advancing lung organoids for COVID-19 research. Dis Model Mech 2021;14:dmm049060. [PMID: 34219165 DOI: 10.1242/dmm.049060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Siqueira JD, Goes LR, Alves BM, de Carvalho PS, Cicala C, Arthos J, Viola JPB, de Melo AC, Soares MA. SARS-CoV-2 genomic and quasispecies analyses in cancer patients reveal relaxed intrahost virus evolution. bioRxiv 2020:2020. [PMID: 32869023 DOI: 10.1101/2020.08.26.267831] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
60 Lv L, Zhang L. Host proviral and antiviral factors for SARS-CoV-2. Virus Genes 2021. [PMID: 34510331 DOI: 10.1007/s11262-021-01869-2] [Reference Citation Analysis]
61 Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, Apátiga-Pérez R, Corniel-Taveras CN, Dominguez-García JJ, Blanco-Alvarez VM, Luna-Muñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol 2021;12:660087. [PMID: 33912129 DOI: 10.3389/fneur.2021.660087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
62 Ahn JH, Kim J, Hong SP, Choi SY, Yang MJ, Ju YS, Kim YT, Kim HM, Rahman MDT, Chung MK, Hong SD, Bae H, Lee CS, Koh GY. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 2021;131:148517. [PMID: 34003804 DOI: 10.1172/JCI148517] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
63 Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022. [PMID: 35589920 DOI: 10.1007/s12035-022-02860-0] [Reference Citation Analysis]
64 Omolaoye TS, Adeniji AA, Cardona Maya WD, du Plessis SS. SARS-COV-2 (Covid-19) and male fertility: Where are we? Reprod Toxicol 2021;99:65-70. [PMID: 33249233 DOI: 10.1016/j.reprotox.2020.11.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G, Yang J, Zheng X, Hu G, Zhu Y, Du S, Zhu Y, Zhang R, Xu J, Lan F, Qu D, Xu G, Zhao Y, Gao D, Xie Y, Luo M, Lu Z. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 2021. [PMID: 34837059 DOI: 10.1038/s41422-021-00595-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
66 Zhu H, Zhang H, Zhou N, Ding J, Jiang J, Liu T, Liu Z, Wang F, Zhang Q, Zhang Z, Yan S, Li L, Benabdallah N, Jin H, Liu Z, Cai L, Thorek DLJ, Yang X, Yang Z. Molecular PET/CT Profiling of ACE2 Expression In Vivo: Implications for Infection and Outcome from SARS-CoV-2. Adv Sci (Weinh) 2021;8:e2100965. [PMID: 34174177 DOI: 10.1002/advs.202100965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Ytrehus K, Ludvigsen S, Mancusi C, Gerdts E, de Simone G. Heart Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression Associated With Male Sex and Salt-Sensitive Hypertension in the Dahl Rat. Front Physiol 2021;12:663819. [PMID: 34349662 DOI: 10.3389/fphys.2021.663819] [Reference Citation Analysis]
68 Liu J, Zhang Y, Han L, Guo S, Wu S, Doud EH, Wang C, Chen H, Rubart-von der Lohe M, Wan J, Yang L. Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports 2022:S2213-6711(22)00058-3. [PMID: 35180394 DOI: 10.1016/j.stemcr.2022.01.014] [Reference Citation Analysis]
69 Khaleghi M, Aziz-Ahari A, Rezaeian N, Asadian S, Mounesi Sohi A, Motamedi O, Azhdeh S. The Valuable Role of Imaging Modalities in the Diagnosis of the Uncommon Presentations of COVID-19: An Educative Case Series. Case Rep Med 2021;2021:7213627. [PMID: 34691187 DOI: 10.1155/2021/7213627] [Reference Citation Analysis]
70 Gard AL, Luu RJ, Miller CR, Maloney R, Cain BP, Marr EE, Burns DM, Gaibler R, Mulhern TJ, Wong CA, Alladina J, Coppeta JR, Liu P, Wang JP, Azizgolshani H, Fezzie RF, Balestrini JL, Isenberg BC, Medoff BD, Finberg RW, Borenstein JT. High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro. Sci Rep 2021;11:14961. [PMID: 34294757 DOI: 10.1038/s41598-021-94095-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clin Microbiol Rev 2021;34:e00133-20. [PMID: 33441314 DOI: 10.1128/CMR.00133-20] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
72 Liu A, Zhang X, Li R, Zheng M, Yang S, Dai L, Wu A, Hu C, Huang Y, Xie M, Chen Q. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol 2021;253:17-30. [PMID: 32991738 DOI: 10.1002/path.5555] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
73 Pluskota-Karwatka D, Hoffmann M, Barciszewski J. Reducing SARS-CoV-2 Pathological Protein Activity with Small Molecules. J Pharm Anal 2021. [PMID: 33842018 DOI: 10.1016/j.jpha.2021.03.012] [Reference Citation Analysis]
74 Lunardi F, Fortarezza F, Vedovelli L, Pezzuto F, Boscolo A, Rossato M, Vettor R, Cattelan AM, Del Vecchio C, Crisanti A, Navalesi P, Gregori D, Calabrese F. Lower Gene Expression of Angiotensin Converting Enzyme 2 Receptor in Lung Tissues of Smokers with COVID-19 Pneumonia. Biomolecules 2021;11:796. [PMID: 34073591 DOI: 10.3390/biom11060796] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Trevisan M, Riccetti S, Sinigaglia A, Barzon L. SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. Int J Mol Sci 2021;22:2356. [PMID: 33652988 DOI: 10.3390/ijms22052356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Grimmett E, Al-Share B, Alkassab MB, Zhou RW, Desai A, Rahim MMA, Woldie I. Cancer vaccines: past, present and future; a review article. Discov Oncol 2022;13:31. [PMID: 35576080 DOI: 10.1007/s12672-022-00491-4] [Reference Citation Analysis]
77 [DOI: 10.1101/2020.09.09.287508] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
78 El-Solh AA, Lawson Y, El-Solh DA. All-cause mortality in COVID-19 patients receiving statin therapy: analysis of veterans affairs database cohort study. Intern Emerg Med 2021. [PMID: 34637080 DOI: 10.1007/s11739-021-02848-z] [Reference Citation Analysis]
79 Ng JH, Sun A, Je HS, Tan EK. Unravelling Pathophysiology of Neurological and Psychiatric Complications of COVID-19 Using Brain Organoids. Neuroscientist 2021;:10738584211015136. [PMID: 34036855 DOI: 10.1177/10738584211015136] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Bui LT, Winters NI, Chung MI, Joseph C, Gutierrez AJ, Habermann AC, Adams TS, Schupp JC, Poli S, Peter LM, Taylor CJ, Blackburn JB, Richmond BW, Nicholson AG, Rassl D, Wallace WA, Rosas IO, Jenkins RG, Kaminski N, Kropski JA, Banovich NE; Human Cell Atlas Lung Biological Network. Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity. Nat Commun 2021;12:4314. [PMID: 34262047 DOI: 10.1038/s41467-021-24467-0] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
81 Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021;320:L430-5. [PMID: 33434105 DOI: 10.1152/ajplung.00499.2020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
82 Penkava J, Muenchhoff M, Badell I, Osterman A, Delbridge C, Niederbuchner F, Soliman S, Rudelius M, Graf A, Krebs S, Blum H, Ulbig M, Baumann C, Zapp D, Maier M, Keppler OT, Lohmann CP, Ledderose S. Detection of SARS-CoV-2-RNA in post-mortem samples of human eyes. Graefes Arch Clin Exp Ophthalmol. [DOI: 10.1007/s00417-021-05529-x] [Reference Citation Analysis]
83 Reus P, Schneider AK, Ulshöfer T, Henke M, Bojkova D, Cinatl J, Ciesek S, Geisslinger G, Laux V, Grättinger M, Gribbon P, Schiffmann S. Characterization of ACE Inhibitors and AT1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model. Life (Basel) 2021;11:810. [PMID: 34440554 DOI: 10.3390/life11080810] [Reference Citation Analysis]
84 Kouwaki T, Nishimura T, Wang G, Oshiumi H. RIG-I-Like Receptor-Mediated Recognition of Viral Genomic RNA of Severe Acute Respiratory Syndrome Coronavirus-2 and Viral Escape From the Host Innate Immune Responses. Front Immunol 2021;12:700926. [PMID: 34249006 DOI: 10.3389/fimmu.2021.700926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Fu J, Wei C, He J, Zhang L, Zhou J, Balaji KS, Shen S, Peng J, Sharma A, Fu J. Evaluation and characterization of HSPA5 (GRP78) expression profiles in normal individuals and cancer patients with COVID-19. Int J Biol Sci 2021;17:897-910. [PMID: 33767597 DOI: 10.7150/ijbs.54055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
86 Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020;319:H1059-68. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Gomes I, Karmirian K, Oliveira JT, Pedrosa CDSG, Mendes MA, Rosman FC, Chimelli L, Rehen S. SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. Lancet Reg Health Am 2021;2:100046. [PMID: 34485969 DOI: 10.1016/j.lana.2021.100046] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Liu X, Huuskonen S, Laitinen T, Redchuk T, Bogacheva M, Salokas K, Pöhner I, Öhman T, Tonduru AK, Hassinen A, Gawriyski L, Keskitalo S, Vartiainen MK, Pietiäinen V, Poso A, Varjosalo M. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol Syst Biol 2021;17:e10396. [PMID: 34709727 DOI: 10.15252/msb.202110396] [Reference Citation Analysis]
89 Parada D, Peña KB, Gumà J, Guilarte C, Riu F. Liquid-based cytological and immunohistochemical study of nasopharyngeal swab from persons under investigation for SARS-CoV-2 infection. Histopathology 2021;78:586-92. [PMID: 32970870 DOI: 10.1111/his.14257] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV 3rd, Kwon DH, Singh T, Tilton JC, Tsai EJ, Tucker NR, Barnard J, Loscalzo J. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res 2021;128:1214-36. [PMID: 33856918 DOI: 10.1161/CIRCRESAHA.121.317997] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
91 Digre A, Lindskog C. The Human Protein Atlas-Spatial localization of the human proteome in health and disease. Protein Sci 2021;30:218-33. [PMID: 33146890 DOI: 10.1002/pro.3987] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
92 Bazrafkan M, Hosseini E, Nazari M, Amorim CA, Sadeghi MR. NLRP3 inflammasome: A joint, potential therapeutic target in management of COVID-19 and fertility problems. J Reprod Immunol 2021;148:103427. [PMID: 34563758 DOI: 10.1016/j.jri.2021.103427] [Reference Citation Analysis]
93 Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, Ahmed MK, Abid MR, Verburgt JC, Kihara D, Yang Z, Fornelli L, Foster SB, Ramratnam B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 2021;21:e2000279. [PMID: 33860983 DOI: 10.1002/pmic.202000279] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
94 Lumpuy-castillo J, Vales-villamarín C, Mahíllo-fernández I, Pérez-nadador I, Soriano-guillén L, Lorenzo O, Garcés C. Association of ACE2 Polymorphisms and Derived Haplotypes With Obesity and Hyperlipidemia in Female Spanish Adolescents. Front Cardiovasc Med 2022;9:888830. [DOI: 10.3389/fcvm.2022.888830] [Reference Citation Analysis]
95 Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biol 2021;19:e3001143. [PMID: 33730024 DOI: 10.1371/journal.pbio.3001143] [Cited by in Crossref: 16] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
96 Barragan M, Guillén JJ, Martin-Palomino N, Rodriguez A, Vassena R. Undetectable viral RNA in oocytes from SARS-CoV-2 positive women. Hum Reprod 2021;36:390-4. [PMID: 32998162 DOI: 10.1093/humrep/deaa284] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
97 Torretta S, Pignataro L, Marchisio P, Capaccio P. SARS-CoV-2 tropism across the upper aerodigestive tract. Int J Immunopathol Pharmacol 2021;35:20587384211056840. [PMID: 34928176 DOI: 10.1177/20587384211056840] [Reference Citation Analysis]
98 Hebbard C, Lee B, Katare R, Garikipati VNS. Diabetes, Heart Failure, and COVID-19: An Update. Front Physiol 2021;12:706185. [PMID: 34721055 DOI: 10.3389/fphys.2021.706185] [Reference Citation Analysis]
99 Sherman EJ, Emmer BT. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. Sci Rep 2021;11:15900. [PMID: 34354120 DOI: 10.1038/s41598-021-95308-9] [Reference Citation Analysis]
100 Al-Zaidan L, Mestiri S, Raza A, Merhi M, Inchakalody VP, Fernandes Q, Taib N, Uddin S, Dermime S. The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target. Tumour Biol 2021;43:177-96. [PMID: 34420993 DOI: 10.3233/TUB-200084] [Reference Citation Analysis]
101 Alirezaei T, Hooshmand S, Irilouzadian R, Hajimoradi B, Montazeri S, Shayegh A. The role of blood urea nitrogen to serum albumin ratio in the prediction of severity and 30‐day mortality in patients with COVID‐19. Health Science Reports 2022;5. [DOI: 10.1002/hsr2.606] [Reference Citation Analysis]
102 Matusiak M, Schürch CM. Expression of SARS-CoV-2 entry receptors in the respiratory tract of healthy individuals, smokers and asthmatics. Respir Res 2020;21:252. [PMID: 32993656 DOI: 10.1186/s12931-020-01521-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
103 Emrani J, Ahmed M, Jeffers-Francis L, Teleha JC, Mowa N, Newman RH, Thomas MD. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment: A review. Int J Biol Macromol 2021;193:1249-73. [PMID: 34756970 DOI: 10.1016/j.ijbiomac.2021.10.172] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Gaussen A, Hornby L, Rockl G, O'Brien S, Delage G, Sapir-Pichhadze R, Drews SJ, Weiss MJ, Lewin A. Evidence of SARS-CoV-2 Infection in Cells, Tissues, and Organs and the Risk of Transmission Through Transplantation. Transplantation 2021;105:1405-22. [PMID: 33724248 DOI: 10.1097/TP.0000000000003744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
105 Rangon CM, Krantic S, Moyse E, Fougère B. The Vagal Autonomic Pathway of COVID-19 at the Crossroad of Alzheimer's Disease and Aging: A Review of Knowledge. J Alzheimers Dis Rep 2020;4:537-51. [PMID: 33532701 DOI: 10.3233/ADR-200273] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
106 Dong M, Zhang J, Ma X, Tan J, Chen L, Liu S, Xin Y, Zhuang L. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother 2020;131:110678. [PMID: 32861070 DOI: 10.1016/j.biopha.2020.110678] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 19.5] [Reference Citation Analysis]
107 Hancock JT, Rouse RC, Stone E, Greenhough A. Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals (Basel) 2021;11:797. [PMID: 33809265 DOI: 10.3390/ani11030797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Marchiano S, Hsiang TY, Khanna A, Higashi T, Whitmore LS, Bargehr J, Davaapil H, Chang J, Smith E, Ong LP, Colzani M, Reinecke H, Yang X, Pabon L, Sinha S, Najafian B, Sniadecki NJ, Bertero A, Gale M Jr, Murry CE. SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports 2021;16:478-92. [PMID: 33657418 DOI: 10.1016/j.stemcr.2021.02.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
109 Toscano-Guerra E, Gallo MM, Arrese-Muñoz I, Giné A, Díaz-Troyano N, Gabriel-Medina P, Riveiro-Barciela M, Labrador-Horrillo M, Martinez-Valle F, Montalvá AS, Hernández-González M, Borrell RP, Rodríguez-Frias F, Ferrer R, Thomson TM, Paciucci R. Recovery of serum testosterone levels is an accurate predictor of survival from COVID-19 in male patients. BMC Med 2022;20:129. [PMID: 35351135 DOI: 10.1186/s12916-022-02345-w] [Reference Citation Analysis]
110 Suresh V, Parida D, Minz AP, Sethi M, Sahoo BS, Senapati S. Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Front Pharmacol 2020;11:579330. [PMID: 33568991 DOI: 10.3389/fphar.2020.579330] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
111 González-paz L, Alvarado MJ, Hurtado-león ML, Lossada C, Vera-villalobos J, Loroño M, Paz J, Jeffreys LN, Torres FJ, Alvarado YJ. Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors. Computers in Biology and Medicine 2022;142:105245. [DOI: 10.1016/j.compbiomed.2022.105245] [Reference Citation Analysis]
112 Pribadi RR, Simadibrata M. Increased serum amylase and/or lipase in coronavirus disease 2019 (COVID-19) patients: Is it really pancreatic injury? JGH Open 2021;5:190-2. [PMID: 33553654 DOI: 10.1002/jgh3.12436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Kuriakose J, Montezano AC, Touyz RM. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021;135:387-407. [PMID: 33511992 DOI: 10.1042/CS20200480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
114 Shah RB, Shah RD, Retzinger DG, Retzinger AC, Retzinger DA, Retzinger GS. Competing Bioaerosols May Influence the Seasonality of Influenza-Like Illnesses, including COVID-19. The Chicago Experience. Pathogens 2021;10:1204. [PMID: 34578237 DOI: 10.3390/pathogens10091204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
115 Nogami M, Hoshi T, Toukairin Y, Arai T, Nishio T. ACE2 immunohistochemistry in salivary and tracheal glands related to age. BMC Res Notes 2022;15:144. [PMID: 35449115 DOI: 10.1186/s13104-022-06031-1] [Reference Citation Analysis]
116 Ren J, Zhang Y, Liu S, Li X, Sun X. Detailed Analyses of the Expression Patterns of Potential Severe Acute Respiratory Syndrome Coronavirus 2 Receptors in the Human Heart Using Single-Nucleus RNA Sequencing. Front Cardiovasc Med 2021;8:757362. [PMID: 34917662 DOI: 10.3389/fcvm.2021.757362] [Reference Citation Analysis]
117 Rudd JM, Tamil Selvan M, Cowan S, Kao YF, Midkiff CC, Narayanan S, Ramachandran A, Ritchey JW, Miller CA. Clinical and Histopathologic Features of a Feline SARS-CoV-2 Infection Model Are Analogous to Acute COVID-19 in Humans. Viruses 2021;13:1550. [PMID: 34452415 DOI: 10.3390/v13081550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Chen Q, Langenbach S, Li M, Xia YC, Gao X, Gartner MJ, Pharo EA, Williams SM, Todd S, Clarke N, Ranganathan S, Baker ML, Subbarao K, Stewart AG. ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies. Front Pharmacol 2022;13:813087. [DOI: 10.3389/fphar.2022.813087] [Reference Citation Analysis]
119 Cai Q, Chen J. Reply to: "Clinical characteristics of COVID-19 patients with abnormal liver tests". J Hepatol 2020;73:713-4. [PMID: 32387074 DOI: 10.1016/j.jhep.2020.04.042] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
120 Brooks EF, Bhatt AS. The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? Cold Spring Harb Mol Case Stud 2021;7:a006031. [PMID: 33593727 DOI: 10.1101/mcs.a006031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
121 Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021;9:695139. [PMID: 34395368 DOI: 10.3389/fpubh.2021.695139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Awasthi M, Gulati S, Sarkar DP, Tiwari S, Kateriya S, Ranjan P, Verma SK. The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV. Viruses 2020;12:E909. [PMID: 32825063 DOI: 10.3390/v12090909] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
123 Smith R, Geary SM, Salem AK. Implications of current and future approaches to coronavirus disease 2019 testing. Future Virol 2020;15:551-6. [PMID: 33193806 DOI: 10.2217/fvl-2020-0318] [Reference Citation Analysis]
124 Chen J, Fan J, Chen Z, Zhang M, Peng H, Liu J, Ding L, Liu M, Zhao C, Zhao P, Zhang S, Zhang X, Xu J. Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proc Natl Acad Sci U S A 2021;118:e2111011118. [PMID: 34873039 DOI: 10.1073/pnas.2111011118] [Reference Citation Analysis]
125 Rath S, Perikala V, Jena AB, Dandapat J. Factors regulating dynamics of angiotensin-converting enzyme-2 (ACE2), the gateway of SARS-CoV-2: Epigenetic modifications and therapeutic interventions by epidrugs. Biomed Pharmacother 2021;143:112095. [PMID: 34479017 DOI: 10.1016/j.biopha.2021.112095] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
126 Thacker VV, Sharma K, Dhar N, Mancini GF, Sordet-Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep 2021;22:e52744. [PMID: 33908688 DOI: 10.15252/embr.202152744] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
127 Patel HK, Makker J, Alemam A, Chilimuri S. Diarrhea due to SARS-CoV-2-Related Exocrine Pancreatic Insufficiency. Case Rep Gastrointest Med 2021;2021:9920981. [PMID: 34094606 DOI: 10.1155/2021/9920981] [Reference Citation Analysis]
128 Geng Q, Shi K, Ye G, Zhang W, Aihara H, Li F. Structural Basis for Human Receptor Recognition by SARS-CoV Omicron Variant BA.1. J Virol 2022;:e0024922. [PMID: 35343765 DOI: 10.1128/jvi.00249-22] [Reference Citation Analysis]
129 Aliee H, Massip F, Qi C, Stella de Biase M, van Nijnatten JL, Kersten ETG, Kermani NZ, Khuder B, Vonk JM, Vermeulen RCH, Neighbors M, Tew GW, Grimbaldeston M, Ten Hacken NHT, Hu S, Guo Y, Zhang X, Sun K, Hiemstra PS, Ponder BA, Makela MJ, Malmstrom K, Rintoul RC, Reyfman PA, Theis FJ, Brandsma CA, Adcock I, Timens W, Xu CJ, van den Berge M, Schwarz RF, Koppelman GH, Nawijn MC, Faiz A. Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways. medRxiv 2020:2020. [PMID: 32909007 DOI: 10.1101/2020.08.31.20169946] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
130 Sherman EJ, Emmer BT. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. bioRxiv 2021:2021. [PMID: 33791703 DOI: 10.1101/2021.03.26.437218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
131 Ghoshal B, Hikmet F, Pineau C, Tucker A, Lindskog C. DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning. Mol Cell Proteomics 2021;20:100140. [PMID: 34425263 DOI: 10.1016/j.mcpro.2021.100140] [Reference Citation Analysis]
132 Mutiawati E, Syahrul S, Fahriani M, Fajar JK, Mamada SS, Maliga HA, Samsu N, Ilmawan M, Purnamasari Y, Asmiragani AA, Ichsan I, Emran TB, Rabaan AA, Masyeni S, Nainu F, Harapan H. Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis. F1000Res 2020;9:1316. [PMID: 33953911 DOI: 10.12688/f1000research.27334.2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
133 Usami Y, Hirose K, Okumura M, Toyosawa S, Sakai T. Brief communication: Immunohistochemical detection of ACE2 in human salivary gland. Oral Sci Int 2020. [PMID: 33041626 DOI: 10.1002/osi2.1085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
134 Beacon TH, Delcuve GP, Davie JR. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus1. Genome 2021;64:386-99. [PMID: 33086021 DOI: 10.1139/gen-2020-0124] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
135 Yalcin HC, Sukumaran V, Al-Ruweidi MKAA, Shurbaji S. Do Changes in ACE-2 Expression Affect SARS-CoV-2 Virulence and Related Complications: A Closer Look into Membrane-Bound and Soluble Forms. Int J Mol Sci 2021;22:6703. [PMID: 34201415 DOI: 10.3390/ijms22136703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 McAllister MJ, Kirkwood K, Chuah SC, Thompson EJ, Cartwright JA, Russell CD, Dorward DA, Lucas CD, Ho GT. Intestinal Protein Characterisation of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in Inflammatory Bowel Disease (IBD) and Fatal COVID-19 Infection. Inflammation 2021. [PMID: 34697723 DOI: 10.1007/s10753-021-01567-z] [Reference Citation Analysis]
137 Ramezankhani R, Solhi R, Memarnejadian A, Nami F, Hashemian SMR, Tricot T, Vosough M, Verfaillie C. Therapeutic modalities and novel approaches in regenerative medicine for COVID-19. Int J Antimicrob Agents 2020;56:106208. [PMID: 33213829 DOI: 10.1016/j.ijantimicag.2020.106208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
138 Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol 2021. [PMID: 34226718 DOI: 10.1038/s41581-021-00452-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Joshi C, Jadeja V, Zhou H. Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies. Int J Mol Sci 2021;22:7127. [PMID: 34281182 DOI: 10.3390/ijms22137127] [Reference Citation Analysis]
140 Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F, Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021;3:149-65. [PMID: 33536639 DOI: 10.1038/s42255-021-00347-1] [Cited by in Crossref: 61] [Cited by in F6Publishing: 68] [Article Influence: 61.0] [Reference Citation Analysis]
141 Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. SSRN 2020;:3611279. [PMID: 32714119 DOI: 10.2139/ssrn.3611279] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Fratta Pasini AM, Stranieri C, Girelli D, Busti F, Cominacini L. Is Ferroptosis a Key Component of the Process Leading to Multiorgan Damage in COVID-19? Antioxidants (Basel) 2021;10:1677. [PMID: 34829548 DOI: 10.3390/antiox10111677] [Reference Citation Analysis]
143 Meiners J, Jansen K, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-magg C, Höflmayer D, Weidemann S, Fraune C, Möller K, Bernreuther C, Lebok P, Menz A, Jacobsen F, Clauditz T, Sauter G, Uhlig R, Wilczak W, Izbicki J, Perez D, Minner S, Burandt E, Krech T, Marx A, Simon R, Steurer S. Angiotensin-Converting Enzyme 2 Protein Is Overexpressed in a Wide Range of Human Tumour Types: A Systematic Tissue Microarray Study on >15,000 Tumours. Biomedicines 2021;9:1831. [DOI: 10.3390/biomedicines9121831] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Park R, Chidharla A, Mehta K, Sun W, Wulff-Burchfield E, Kasi A. Sex-bias in COVID-19-associated illness severity and mortality in cancer patients: A systematic review and meta-analysis. EClinicalMedicine 2020;26:100519. [PMID: 32864589 DOI: 10.1016/j.eclinm.2020.100519] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
145 Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M. Potential Physiological and Cellular Mechanisms of Exercise That Decrease the Risk of Severe Complications and Mortality Following SARS-CoV-2 Infection. Sports (Basel) 2021;9:121. [PMID: 34564326 DOI: 10.3390/sports9090121] [Reference Citation Analysis]
146 Park JH, Lee HK. Delivery Routes for COVID-19 Vaccines. Vaccines (Basel) 2021;9:524. [PMID: 34069359 DOI: 10.3390/vaccines9050524] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Negretti NM, Kapp ME, Benjamin JT, Gulleman P, Nichols DS, Braunstein LZ, Hackett A, Koval M, Guttentag SH, Blackwell TS, Webber SA, Banovich NE, Kropski JA, Sucre JM; Vanderbilt COVID-19 Consortium Cohort., Human Cell Atlas Biological Network. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest 2021;131:140766. [PMID: 33180746 DOI: 10.1172/JCI140766] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 24.0] [Reference Citation Analysis]
148 Cao TT, Zhang GQ, Pellegrini E, Zhao Q, Li J, Luo LJ, Pan HQ. COVID-19 and its effects on the digestive system. World J Gastroenterol 2021; 27(24): 3502-3515 [PMID: 34239265 DOI: 10.3748/wjg.v27.i24.3502] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
149 Bandopadhyay A, Singh AK, Chaubey G. COVID-19: The Cause of the Manifested Cardiovascular Complications During the Pandemic. Front Cardiovasc Med 2021;8:744482. [PMID: 34778405 DOI: 10.3389/fcvm.2021.744482] [Reference Citation Analysis]
150 Yang S, Tian M, Johnson AN. SARS-CoV-2 protein ORF3a is pathogenic in Drosophila and causes phenotypes associated with COVID-19 post-viral syndrome. bioRxiv 2020:2020. [PMID: 33398283 DOI: 10.1101/2020.12.20.423533] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
151 Camargo SMR, Vuille-Dit-Bille RN, Meier CF, Verrey F. ACE2 and gut amino acid transport. Clin Sci (Lond). 2020;134:2823-2833. [PMID: 33140827 DOI: 10.1042/cs20200477] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
152 Zafar MI, Yu J, Li H. Implications of RNA Viruses in the Male Reproductive Tract: An Outlook on SARS-CoV-2. Front Microbiol 2021;12:783963. [PMID: 35003013 DOI: 10.3389/fmicb.2021.783963] [Reference Citation Analysis]
153 Badawi S, Ali BR. ACE2 Nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues. Hum Genomics 2021;15:8. [PMID: 33514423 DOI: 10.1186/s40246-021-00304-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
154 Thakur S, Mayank, Sarkar B, Ansari AJ, Khandelwal A, Arya A, Poduri R, Joshi G. Exploring the magic bullets to identify Achilles' heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update. Food Chem Toxicol 2021;147:111887. [PMID: 33253764 DOI: 10.1016/j.fct.2020.111887] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
155 Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022. [PMID: 35476216 DOI: 10.1007/s40259-022-00529-7] [Reference Citation Analysis]
156 Gao S, Zhang L. ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput Struct Biotechnol J 2020;18:4040-7. [PMID: 33282147 DOI: 10.1016/j.csbj.2020.11.032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
157 Marín R, Pujol FH, Rojas D, Sobrevia L. SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2022;1868:166321. [DOI: 10.1016/j.bbadis.2021.166321] [Reference Citation Analysis]
158 Khan M, Singh GK, Abrar S, Ganeshan R, Morgan K, Harky A. Pharmacotherapeutic agents for the management of COVID-19 patients with preexisting cardiovascular disease. Expert Opin Pharmacother 2021;:1-20. [PMID: 34464223 DOI: 10.1080/14656566.2021.1960311] [Reference Citation Analysis]
159 Gupta I, Sohail MU, Elzawawi KE, Amarah AH, Vranic S, Al-Asmakh M, Al Moustafa AE. SARS-CoV-2 infection and smoking: What is the association? A brief review. Comput Struct Biotechnol J 2021;19:1654-60. [PMID: 33777332 DOI: 10.1016/j.csbj.2021.03.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
160 Gradin A, Andersson H, Luther T, Anderberg SB, Rubertsson S, Lipcsey M, Åberg M, Larsson A, Frithiof R, Hultström M. Urinary cytokines correlate with acute kidney injury in critically ill COVID-19 patients. Cytokine 2021;146:155589. [PMID: 34161857 DOI: 10.1016/j.cyto.2021.155589] [Reference Citation Analysis]
161 Ardestani Zadeh A, Arab D. COVID-19 and male reproductive system: pathogenic features and possible mechanisms. J Mol Histol 2021. [PMID: 34232425 DOI: 10.1007/s10735-021-10003-3] [Reference Citation Analysis]
162 Macor P, Durigutto P, Mangogna A, Bussani R, De Maso L, D'Errico S, Zanon M, Pozzi N, Meroni PL, Tedesco F. Multiple-Organ Complement Deposition on Vascular Endothelium in COVID-19 Patients. Biomedicines 2021;9:1003. [PMID: 34440207 DOI: 10.3390/biomedicines9081003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
163 Sun AM, Hoffman T, Luu BQ, Ashammakhi N, Li S. Application of lung microphysiological systems to COVID-19 modeling and drug discovery: a review. Biodes Manuf 2021;:1-19. [PMID: 34178414 DOI: 10.1007/s42242-021-00136-5] [Reference Citation Analysis]
164 Pascolo L, Zito G, Zupin L, Luppi S, Giolo E, Martinelli M, De Rocco D, Crovella S, Ricci G. Renin Angiotensin System, COVID-19 and Male Fertility: Any Risk for Conceiving? Microorganisms 2020;8:E1492. [PMID: 32998451 DOI: 10.3390/microorganisms8101492] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
165 Cabbab ILN, Manalo RVM. Anti-inflammatory drugs and the renin-angiotensin-aldosterone system: Current knowledge and potential effects on early SARS-CoV-2 infection. Virus Res 2021;291:198190. [PMID: 33039544 DOI: 10.1016/j.virusres.2020.198190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
166 Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 2020;77:100741. [PMID: 32773102 DOI: 10.1016/j.jbior.2020.100741] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 31.5] [Reference Citation Analysis]
167 Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H, Harbert JL, Posgai AL, Paulsen JD, Lloyd R, Cechin S, Pugliese A, Campbell-Thompson M, Vander Heide RS, Evans-Molina C, Homann D, Atkinson MA. Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab 2020;32:1041-1051.e6. [PMID: 33207244 DOI: 10.1016/j.cmet.2020.11.005] [Cited by in Crossref: 37] [Cited by in F6Publishing: 44] [Article Influence: 18.5] [Reference Citation Analysis]
168 Sun K, Gu L, Ma L, Duan Y. Atlas of ACE2 gene expression reveals novel insights into transmission of SARS-CoV-2. Heliyon 2021;7:e05850. [PMID: 33392409 DOI: 10.1016/j.heliyon.2020.e05850] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
169 Boby N, Cao X, Williams K, Gadila SKG, Shroyer MN, Didier PJ, Srivastav SK, Das A, Baker K, Sha Q, Pahar B. Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Front Immunol 2022;13:835686. [DOI: 10.3389/fimmu.2022.835686] [Reference Citation Analysis]
170 [DOI: 10.1101/2020.09.03.282103] [Cited by in Crossref: 33] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
171 Mahmoud H, Hamody A, M Hefny H, Tohamy D, Awny I. Evaluation of Anti-SARS-CoV-2 IgA in the Conjunctival Secretions of COVID-19 Patients. Clin Ophthalmol 2021;15:1933-7. [PMID: 34007145 DOI: 10.2147/OPTH.S312942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
172 Babajide OI, Ogbon EO, Adelodun A, Agbalajobi O, Ogunsesan Y. COVID‐19 and acute pancreatitis: A systematic review. JGH Open. [DOI: 10.1002/jgh3.12729] [Reference Citation Analysis]
173 Colleluori G, Graciotti L, Pesaresi M, Di Vincenzo A, Perugini J, Di Mercurio E, Caucci S, Bagnarelli P, Zingaretti CM, Nisoli E, Menzo S, Tagliabracci A, Ladoux A, Dani C, Giordano A, Cinti S. Visceral fat inflammation and fat embolism are associated with lung’s lipidic hyaline membranes in subjects with COVID-19. Int J Obes. [DOI: 10.1038/s41366-022-01071-w] [Reference Citation Analysis]
174 Topol EJ. COVID-19 can affect the heart. Science 2020;370:408-9. [DOI: 10.1126/science.abe2813] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
175 Pathangey G, Fadadu PP, Hospodar AR, Abbas AE. Angiotensin-converting enzyme 2 and COVID-19: patients, comorbidities, and therapies. Am J Physiol Lung Cell Mol Physiol 2021;320:L301-30. [PMID: 33237815 DOI: 10.1152/ajplung.00259.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
176 Lempp FA, Soriaga LB, Montiel-Ruiz M, Benigni F, Noack J, Park YJ, Bianchi S, Walls AC, Bowen JE, Zhou J, Kaiser H, Joshi A, Agostini M, Meury M, Dellota E Jr, Jaconi S, Cameroni E, Martinez-Picado J, Vergara-Alert J, Izquierdo-Useros N, Virgin HW, Lanzavecchia A, Veesler D, Purcell LA, Telenti A, Corti D. Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature 2021;598:342-7. [PMID: 34464958 DOI: 10.1038/s41586-021-03925-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
177 Schimmel L, Chew KY, Stocks CJ, Yordanov TE, Essebier P, Kulasinghe A, Monkman J, Dos Santos Miggiolaro AFR, Cooper C, de Noronha L, Schroder K, Lagendijk AK, Labzin LI, Short KR, Gordon EJ. Endothelial cells are not productively infected by SARS-CoV-2. Clin Transl Immunology 2021;10:e1350. [PMID: 34721846 DOI: 10.1002/cti2.1350] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021;10:971. [PMID: 34204362 DOI: 10.3390/antiox10060971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
179 Panigrahi S, Goswami T, Ferrari B, Antonelli CJ, Bazdar DA, Gilmore H, Freeman ML, Lederman MM, Sieg SF. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis. Microbiol Spectr 2021;:e0073521. [PMID: 34935423 DOI: 10.1128/Spectrum.00735-21] [Reference Citation Analysis]
180 Oaklander AL. Clinical significance of angiotensin-converting enzyme 2 receptors for severe acute respiratory syndrome coronavirus 2 (COVID-19) on peripheral small-fiber sensory neurons is unknown today. Pain 2020;161:2431-3. [PMID: 32826753 DOI: 10.1097/j.pain.0000000000002050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
181 Sivertsson Å, Lindström E, Oksvold P, Katona B, Hikmet F, Vuu J, Gustavsson J, Sjöstedt E, von Feilitzen K, Kampf C, Schwenk JM, Uhlén M, Lindskog C. Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins. J Proteome Res 2020;19:4766-81. [PMID: 33170010 DOI: 10.1021/acs.jproteome.0c00486] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
182 Liu J, Li Y, Liu Q, Yao Q, Wang X, Zhang H, Chen R, Ren L, Min J, Deng F, Yan B, Liu L, Hu Z, Wang M, Zhou Y. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discov 2021;7:17. [PMID: 33758165 DOI: 10.1038/s41421-021-00249-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
183 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136:111193. [PMID: 33461019 DOI: 10.1016/j.biopha.2020.111193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
184 Williams TL, Strachan G, Macrae RGC, Kuc RE, Nyimanu D, Paterson AL, Sinha S, Maguire JJ, Davenport AP. Differential expression in humans of the viral entry receptor ACE2 compared with the short deltaACE2 isoform lacking SARS-CoV-2 binding sites. Sci Rep 2021;11. [DOI: 10.1038/s41598-021-03731-9] [Reference Citation Analysis]
185 Poduri R, Joshi G, Jagadeesh G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cell Signal 2020;74:109721. [PMID: 32711111 DOI: 10.1016/j.cellsig.2020.109721] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 21.5] [Reference Citation Analysis]
186 Trypsteen W, Van Cleemput J, Snippenberg WV, Gerlo S, Vandekerckhove L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog 2020;16:e1009037. [PMID: 33125439 DOI: 10.1371/journal.ppat.1009037] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 20.0] [Reference Citation Analysis]
187 Thye AY, Law JW, Pusparajah P, Letchumanan V, Chan KG, Lee LH. Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines 2021;9:1303. [PMID: 34680420 DOI: 10.3390/biomedicines9101303] [Reference Citation Analysis]
188 Zhang Q, Wadgaonkar P, Xu L, Thakur C, Fu Y, Bi Z, Qiu Y, Almutairy B, Zhang W, Stemmer P, Chen F. Environmentally-induced mdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Theranostics 2021;11:7970-83. [PMID: 34335974 DOI: 10.7150/thno.62138] [Reference Citation Analysis]
189 Masachessi G, Castro G, Cachi AM, Marinzalda MDLÁ, Liendo M, Pisano MB, Sicilia P, Ibarra G, Rojas RM, López L, Barbás G, Cardozo D, Ré VE, Nates SV. Wastewater based epidemiology as a silent sentinel of the trend of SARS-CoV-2 circulation in the community in central Argentina. Water Research 2022;219:118541. [DOI: 10.1016/j.watres.2022.118541] [Reference Citation Analysis]
190 Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ, Iwamoto DV, Germann D, Reszeć J, Marcińczyk N, Carroll RJ, Janmey PA, Schwarz JM, Bucki R, Patteson AE. Extracellular Vimentin as a Target Against SARS-CoV-2 Host Cell Invasion. Small 2021;:e2105640. [PMID: 34866333 DOI: 10.1002/smll.202105640] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
191 Zhou L, Xu Z, Guerra J, Rosenberg AZ, Fenaroli P, Eberhart CG, Duh EJ. Expression of the SARS-CoV-2 Receptor ACE2 in Human Retina and Diabetes-Implications for Retinopathy. Invest Ophthalmol Vis Sci 2021;62:6. [PMID: 34086044 DOI: 10.1167/iovs.62.7.6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
192 Tragni V, Preziusi F, Laera L, Onofrio A, Mercurio I, Todisco S, Volpicella M, De Grassi A, Pierri CL. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. EPMA J 2022;:1-27. [PMID: 35013687 DOI: 10.1007/s13167-021-00267-w] [Reference Citation Analysis]
193 Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CBF, Lu-Culligan WJ, Campbell KH, Casanovas-Massana A, Bermejo S, Toothaker JM, Lee HJ, Liu F, Schulz W, Fournier J, Muenker MC, Moore AJ, Konnikova L, Neugebauer KM, Ring A, Grubaugh ND, Ko AI, Morotti R, Guller S, Kliman HJ, Iwasaki A, Farhadian SF; Yale IMPACT Team. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med (N Y) 2021;2:591-610.e10. [PMID: 33969332 DOI: 10.1016/j.medj.2021.04.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
194 Sahai A, Bhandari R, Koupenova M, Freedman J, Godwin M, McIntyre T, Chung M, Iskandar JP, Kamran H, Aggarwal A, Kalra A, Bartholomew J, McCrae K, Elbadawi A, Svensson L, Kapadia S, Hariri E, Cameron S. SARS-CoV-2 Receptors are Expressed on Human Platelets and the Effect of Aspirin on Clinical Outcomes in COVID-19 Patients. Res Sq 2020:rs. [PMID: 33398263 DOI: 10.21203/rs.3.rs-119031/v1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
195 Gilham D, Smith AL, Fu L, Moore DY, Muralidharan A, Reid SPM, Stotz SC, Johansson JO, Sweeney M, Wong NCW, Kulikowski E, El-Gamal D. Bromodomain and Extraterminal Protein Inhibitor, Apabetalone (RVX-208), Reduces ACE2 Expression and Attenuates SARS-Cov-2 Infection In Vitro. Biomedicines 2021;9:437. [PMID: 33919584 DOI: 10.3390/biomedicines9040437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
196 Dean AQ, Bozza WP, Twomey JD, Luo S, Nalli A, Zhang B. The fight against COVID-19: Striking a balance in the renin-angiotensin system. Drug Discov Today 2021:S1359-6446(21)00192-6. [PMID: 33865979 DOI: 10.1016/j.drudis.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
197 Chouchana L, Blet A, Al-Khalaf M, Kafil TS, Nair G, Robblee J, Drici MD, Valnet-Rabier MB, Micallef J, Salvo F, Treluyer JM, Liu PP. Features of Inflammatory Heart Reactions Following mRNA COVID-19 Vaccination at a Global Level. Clin Pharmacol Ther 2021. [PMID: 34860360 DOI: 10.1002/cpt.2499] [Reference Citation Analysis]
198 Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021;20:100103. [PMID: 34089862 DOI: 10.1016/j.mcpro.2021.100103] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
199 Lee IT, Nakayama T, Wu CT, Goltsev Y, Jiang S, Gall PA, Liao CK, Shih LC, Schürch CM, McIlwain DR, Chu P, Borchard NA, Zarabanda D, Dholakia SS, Yang A, Kim D, Kanie T, Lin CD, Tsai MH, Phillips KM, Kim R, Overdevest JB, Tyler MA, Yan CH, Lin CF, Lin YT, Bau DT, Tsay GJ, Patel ZM, Tsou YA, Tai CJ, Yeh TH, Hwang PH, Nolan GP, Nayak JV, Jackson PK. Robust ACE2 protein expression localizes to the motile cilia of the respiratory tract epithelia and is not increased by ACE inhibitors or angiotensin receptor blockers. medRxiv 2020:2020. [PMID: 32511516 DOI: 10.1101/2020.05.08.20092866] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
200 Magro CM, Mulvey J, Kubiak J, Mikhail S, Suster D, Crowson AN, Laurence J, Nuovo G. Severe COVID-19: A multifaceted viral vasculopathy syndrome. Ann Diagn Pathol 2021;50:151645. [PMID: 33248385 DOI: 10.1016/j.anndiagpath.2020.151645] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
201 Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020;11:5301. [PMID: 33067450 DOI: 10.1038/s41467-020-19045-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
202 Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, Jasuja R, Lawson DQ, Davis K, Rothlauf PW, Jo H, Lee N, Tenneti K, Eschbach JE, Mugisha CS, Vuong HR, Bailey AL, Hayes DN, Whelan SPJ, Horani A, Brody SL, Goldfarb D, Major MB, Kutluay SB. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. bioRxiv 2021:2021. [PMID: 33688646 DOI: 10.1101/2021.03.01.433431] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
203 Gahmberg CG, Grönholm M. How integrin phosphorylations regulate cell adhesion and signaling. Trends Biochem Sci 2021:S0968-0004(21)00242-5. [PMID: 34872819 DOI: 10.1016/j.tibs.2021.11.003] [Reference Citation Analysis]
204 Fignani D, Licata G, Brusco N, Nigi L, Grieco GE, Marselli L, Overbergh L, Gysemans C, Colli ML, Marchetti P, Mathieu C, Eizirik DL, Sebastiani G, Dotta F. SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front Endocrinol (Lausanne) 2020;11:596898. [PMID: 33281748 DOI: 10.3389/fendo.2020.596898] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 19.5] [Reference Citation Analysis]
205 Tong H, Chen H, Williams CM. Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses 2022;14:837. [PMID: 35458567 DOI: 10.3390/v14040837] [Reference Citation Analysis]
206 Furuhashi M, Sakai A, Tanaka M, Higashiura Y, Mori K, Koyama M, Ohnishi H, Saitoh S, Shimamoto K. Distinct Regulation of U-ACE2 and P-ACE2 (Urinary and Plasma Angiotensin-Converting Enzyme 2) in a Japanese General Population. Hypertension 2021;78:1138-49. [PMID: 34420372 DOI: 10.1161/HYPERTENSIONAHA.121.17674] [Reference Citation Analysis]
207 Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis 2021;8:385-400. [PMID: 33521210 DOI: 10.1016/j.gendis.2020.08.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
208 Singh M, Bansal V, Feschotte C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Rep 2020;32:108175. [PMID: 32946807 DOI: 10.1016/j.celrep.2020.108175] [Cited by in Crossref: 73] [Cited by in F6Publishing: 79] [Article Influence: 36.5] [Reference Citation Analysis]
209 de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021;7:3487-502. [PMID: 34288642 DOI: 10.1021/acsbiomaterials.1c00306] [Reference Citation Analysis]
210 Shahriari Felordi M, Memarnejadian A, Najimi M, Vosough M. Is There any Alternative Receptor for SARS-CoV-2? Cell J 2021;23:247-50. [PMID: 34096226 DOI: 10.22074/cellj.2021.7977] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
211 Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CBF, Lu-Culligan WJ, Campbell KH, Casanovas-Massana A, Bermejo S, Toothaker JM, Lee HJ, Liu F, Schulz W, Fournier J, Muenker MC, Moore AJ, Konnikova L, Neugebauer KM, Ring A, Grubaugh ND, Ko AI, Morotti R, Guller S, Kliman HJ, Iwasaki A, Farhadian SF; Yale IMPACT Team. SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface. medRxiv 2021:2021. [PMID: 33532791 DOI: 10.1101/2021.01.25.21250452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
212 Rittmannsberger H, Barth M, Malik P, Yazdi K. [Neuropsychiatric Aspects of COVID-19 - A Narrative Overview]. Fortschr Neurol Psychiatr 2021. [PMID: 34341978 DOI: 10.1055/a-1523-3850] [Reference Citation Analysis]
213 De Pasquale V, Quiccione MS, Tafuri S, Avallone L, Pavone LM. Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021;22:6574. [PMID: 34207476 DOI: 10.3390/ijms22126574] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Lechien JR, Radulesco T, Calvo-Henriquez C, Chiesa-Estomba CM, Hans S, Barillari MR, Cammaroto G, Descamps G, Hsieh J, Vaira L, De Riu G, Sowerby L, Gengler I, Michel J, Saussez S. ACE2 & TMPRSS2 Expressions in Head & Neck Tissues: A Systematic Review. Head Neck Pathol 2021;15:225-35. [PMID: 32816230 DOI: 10.1007/s12105-020-01212-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
215 Chakravarty S. COVID-19: The Effect of Host Genetic Variations on Host-Virus Interactions. J Proteome Res 2021;20:139-53. [PMID: 33301685 DOI: 10.1021/acs.jproteome.0c00637] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
216 Song X, Hu W, Yu H, Zhao L, Zhao Y, Zhao X, Xue H, Zhao Y. Little to no expression of angiotensin‐converting enzyme‐2 on most human peripheral blood immune cells but highly expressed on tissue macrophages. Cytometry. [DOI: 10.1002/cyto.a.24285] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
217 Mencucci R, Favuzza E, Becatti M, Tani A, Mazzantini C, Vignapiano R, Fiorillo C, Pellegrini-Giampietro D, Manetti M, Marini M, Landucci E. Co-expression of the SARS-CoV-2 entry receptors ACE2 and TMPRSS2 in healthy human conjunctiva. Exp Eye Res 2021;205:108527. [PMID: 33667466 DOI: 10.1016/j.exer.2021.108527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
218 Karthika T, Joseph J, Das VRA, Nair N, Charulekha P, Roji MD, Raj VS. SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells 2021;10:1814. [PMID: 34359983 DOI: 10.3390/cells10071814] [Reference Citation Analysis]
219 Santopolo S, Riccio A, Santoro MG. The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochem Biophys Res Commun 2021;538:80-7. [PMID: 33303190 DOI: 10.1016/j.bbrc.2020.10.080] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
220 Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, Blasi M, Musah S. SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Front Cell Dev Biol 2022;10:855340. [DOI: 10.3389/fcell.2022.855340] [Reference Citation Analysis]
221 Qiao J, Li W, Bao J, Peng Q, Wen D, Wang J, Sun B. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun 2020;533:867-71. [PMID: 33008593 DOI: 10.1016/j.bbrc.2020.09.042] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
222 Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Schefold JC, Cilloniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardis M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martín JF, Rubio I. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 2021;9:622-42. [PMID: 33965003 DOI: 10.1016/S2213-2600(21)00218-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
223 Hilpert K. Is the Gut Microbiome a Target for Adjuvant Treatment of COVID-19? Biologics 2021;1:285-99. [DOI: 10.3390/biologics1030017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Machluf Y, Rosenfeld S, Ben Shlomo I, Chaiter Y, Dekel Y. The Misattributed and Silent Causes of Poor COVID-19 Outcomes Among Pregnant Women. Front Med (Lausanne) 2021;8:745797. [PMID: 34765620 DOI: 10.3389/fmed.2021.745797] [Reference Citation Analysis]
225 Ravichandran B, Grimm D, Krüger M, Kopp S, Infanger M, Wehland M. SARS-CoV-2 and hypertension. Physiol Rep 2021;9:e14800. [PMID: 34121359 DOI: 10.14814/phy2.14800] [Reference Citation Analysis]
226 Tomchaney M, Contoli M, Mayo J, Baraldo S, Li S, Cabel CR, Bull DA, Lick S, Malo J, Knoper S, Kim SS, Tram J, Rojas-Quintero J, Kraft M, Ledford JG, Tesfaigzi Y, Martinez FD, Thorne CA, Kheradmand F, Campos SK, Papi A, Polverino F. Paradoxical effects of cigarette smoke and COPD on SARS-CoV-2 infection and disease. BMC Pulm Med 2021;21:275. [PMID: 34425811 DOI: 10.1186/s12890-021-01639-8] [Reference Citation Analysis]
227 O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021;95:103709. [PMID: 33397626 DOI: 10.1016/j.fm.2020.103709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
228 Zhang Z, Guo L, Lu X, Zhang C, Huang L, Wang X, Duan F, Liang H, Chen P, Zeng L, Shao J, Li H, Li L, Liu L, Li C, Zhang J, Ma CY, Kwan KY, Liu W, Xu Y, Gu X, Jiang H, Du H, Zhang T, Wu Y, Yu G, Chen J, Luo R, Liao C, Tse HF, Chen Z, Chen HJ, Xia H, Lian Q. Clinical analysis and pluripotent stem cells-based model reveal possible impacts of ACE2 and lung progenitor cells on infants vulnerable to COVID-19. Theranostics 2021;11:2170-81. [PMID: 33500718 DOI: 10.7150/thno.53136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
229 Omenn GS, Lane L, Overall CM, Paik YK, Cristea IM, Corrales FJ, Lindskog C, Weintraub S, Roehrl MHA, Liu S, Bandeira N, Srivastava S, Chen YJ, Aebersold R, Moritz RL, Deutsch EW. Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project. J Proteome Res 2021. [PMID: 34670092 DOI: 10.1021/acs.jproteome.1c00590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
230 Kallumadyil AMT, McClenahan T, De Filippis S, Vungarala A, Satyadev N, Waters RS, Kulkarni AL. Perspectives into the possible effects of the B.1.1.7 variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on spermatogenesis. J Basic Clin Physiol Pharmacol 2021. [PMID: 34837491 DOI: 10.1515/jbcpp-2021-0083] [Reference Citation Analysis]
231 Triposkiadis F, Xanthopoulos A, Giamouzis G, Boudoulas KD, Starling RC, Skoularigis J, Boudoulas H, Iliodromitis E. ACE2, the Counter-Regulatory Renin-Angiotensin System Axis and COVID-19 Severity. J Clin Med 2021;10:3885. [PMID: 34501332 DOI: 10.3390/jcm10173885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
232 Siqueira JD, Goes LR, Alves BM, de Carvalho PS, Cicala C, Arthos J, Viola JPB, de Melo AC, Soares MA. SARS-CoV-2 genomic analyses in cancer patients reveal elevated intrahost genetic diversity. Virus Evol 2021;7:veab013. [PMID: 33738124 DOI: 10.1093/ve/veab013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
233 Kliche J, Kuss H, Ali M, Ivarsson Y. Cytoplasmic short linear motifs in ACE2 and integrin β3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 2021;14:eabf1117. [PMID: 33436498 DOI: 10.1126/scisignal.abf1117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
234 Kothandaraman N, Rengaraj A, Xue B, Yew WS, Velan SS, Karnani N, Leow MKS. COVID-19 endocrinopathy with hindsight from SARS. Am J Physiol Endocrinol Metab 2021;320:E139-50. [PMID: 33236920 DOI: 10.1152/ajpendo.00480.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
235 Seo JS, Yoon SW, Hwang SH, Nam SM, Nahm SS, Jeong JH, Lee J, Youn HN, Kim JB, Kim W. The Microvillar and Solitary Chemosensory Cells as the Novel Targets of Infection of SARS-CoV-2 in Syrian Golden Hamsters. Viruses 2021;13:1653. [PMID: 34452517 DOI: 10.3390/v13081653] [Reference Citation Analysis]
236 Shiers S, Ray PR, Wangzhou A, Sankaranarayanan I, Tatsui CE, Rhines LD, Li Y, Uhelski ML, Dougherty PM, Price TJ. ACE2 and SCARF expression in human dorsal root ganglion nociceptors: implications for SARS-CoV-2 virus neurological effects. Pain 2020;161:2494-501. [PMID: 32826754 DOI: 10.1097/j.pain.0000000000002051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
237 Shuai H, Chan JF, Yuen TT, Yoon C, Hu JC, Wen L, Hu B, Yang D, Wang Y, Hou Y, Huang X, Chai Y, Chan CC, Poon VK, Lu L, Zhang RQ, Chan WM, Ip JD, Chu AW, Hu YF, Cai JP, Chan KH, Zhou J, Sridhar S, Zhang BZ, Yuan S, Zhang AJ, Huang JD, To KK, Yuen KY, Chu H. Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine 2021;73:103643. [PMID: 34689086 DOI: 10.1016/j.ebiom.2021.103643] [Reference Citation Analysis]
238 [DOI: 10.1101/2021.04.03.438258] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
239 Robinson FA, Mihealsick RP, Wagener BM, Hanna P, Poston MD, Efimov IR, Shivkumar K, Hoover DB. Role of angiotensin-converting enzyme 2 and pericytes in cardiac complications of COVID-19 infection. Am J Physiol Heart Circ Physiol 2020;319:H1059-68. [PMID: 33036546 DOI: 10.1152/ajpheart.00681.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
240 Odun-ayo F, Reddy L. Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. Gastroenterology Insights 2022;13:35-59. [DOI: 10.3390/gastroent13010006] [Reference Citation Analysis]
241 Glebov OO. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J. 2020;287:3664-3671. [PMID: 32428379 DOI: 10.1111/febs.15369] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 35.0] [Reference Citation Analysis]
242 Sudhakar M, Winfred SB, Meiyazhagan G, Venkatachalam DP. Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022. [PMID: 35084674 DOI: 10.1007/s11010-022-04356-w] [Reference Citation Analysis]
243 Perez-Valera M, Martinez-Canton M, Gallego-Selles A, Galván-Alvarez V, Gelabert-Rebato M, Morales-Alamo D, Santana A, Martin-Rodriguez S, Ponce-Gonzalez JG, Larsen S, Losa-Reyna J, Perez-Suarez I, Dorado C, Curtelin D, Gonzalez-Henriquez JJ, Boushel R, Hallen J, de Pablos Velasco P, Freixinet-Gilart J, Holmberg HC, Helge JW, Martin-Rincon M, Calbet JAL. Angiotensin-Converting Enzyme 2 (SARS-CoV-2 receptor) expression in human skeletal muscle. Scand J Med Sci Sports 2021;31:2249-58. [PMID: 34551157 DOI: 10.1111/sms.14061] [Reference Citation Analysis]
244 Lean FZX, Núñez A, Spiro S, Priestnall SL, Vreman S, Bailey D, James J, Wrigglesworth E, Suarez-Bonnet A, Conceicao C, Thakur N, Byrne AMP, Ackroyd S, Delahay RJ, van der Poel WHM, Brown IH, Fooks AR, Brookes SM. Differential susceptibility of SARS-CoV-2 in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterisation. Transbound Emerg Dis 2021. [PMID: 34245662 DOI: 10.1111/tbed.14232] [Reference Citation Analysis]
245 Verstockt B, Verstockt S, Abdu Rahiman S, Ke BJ, Arnauts K, Cleynen I, Sabino J, Ferrante M, Matteoli G, Vermeire S. Intestinal Receptor of SARS-CoV-2 in Inflamed IBD Tissue Seems Downregulated by HNF4A in Ileum and Upregulated by Interferon Regulating Factors in Colon. J Crohns Colitis 2021;15:485-98. [PMID: 32915959 DOI: 10.1093/ecco-jcc/jjaa185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
246 Gianaroli L, Ata B, Lundin K, Rautakallio-Hokkanen S, Tapanainen JS, Vermeulen N, Veiga A, Mocanu E; ESHRE COVID-19 Working Group. The calm after the storm: re-starting ART treatments safely in the wake of the COVID-19 pandemic. Hum Reprod 2021;36:275-82. [PMID: 33017461 DOI: 10.1093/humrep/deaa285] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
247 Takashima K, Oshiumi H. [The innate immune response to SARS-CoV-2]. Uirusu 2021;71:33-40. [PMID: 35526992 DOI: 10.2222/jsv.71.33] [Reference Citation Analysis]
248 Savoia C, Volpe M, Kreutz R. Hypertension, a Moving Target in COVID-19: Current Views and Perspectives. Circ Res 2021;128:1062-79. [PMID: 33793331 DOI: 10.1161/CIRCRESAHA.121.318054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
249 Targosz-Korecka M, Kubisiak A, Kloska D, Kopacz A, Grochot-Przeczek A, Szymonski M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci Rep 2021;11:12157. [PMID: 34108510 DOI: 10.1038/s41598-021-91231-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
250 Zhang F, Li W, Feng J, Ramos da Silva S, Ju E, Zhang H, Chang Y, Moore PS, Guo H, Gao SJ. SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. J Med Virol 2021. [PMID: 34324210 DOI: 10.1002/jmv.27244] [Reference Citation Analysis]
251 Zhang Z, Guo L, Huang L, Zhang C, Luo R, Zeng L, Liang H, Li Q, Lu X, Wang X, Yan Ma C, Shao J, Luo W, Li L, Liu L, Li Z, Zhou X, Zhang X, Liu J, Yang J, Kwan KY, Liu W, Xu Y, Jiang H, Liu H, Du H, Wu Y, Yu G, Chen J, Wu J, Zhang J, Liao C, Chen HJ, Chen Z, Tse HF, Xia H, Lian Q. Distinct disease severity between children and older adults with COVID-19: Impacts of ACE2 expression, distribution, and lung progenitor cells. Clin Infect Dis 2021:ciaa1911. [PMID: 33388749 DOI: 10.1093/cid/ciaa1911] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
252 Chapoval SP, Keegan AD. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol Med 2021;27:162. [PMID: 34961486 DOI: 10.1186/s10020-021-00423-y] [Reference Citation Analysis]
253 Nader D, Fletcher N, Curley GF, Kerrigan SW. SARS-CoV-2 uses major endothelial integrin αvβ3 to cause vascular dysregulation in-vitro during COVID-19. PLoS One 2021;16:e0253347. [PMID: 34161337 DOI: 10.1371/journal.pone.0253347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
254 Ozbalci D. A tale of two diseases: Sarcoidosis, COVID-19 and new therapeutic options with dual RAS inhibition and tetanus-diphtheria vaccine. Med Hypotheses 2021;152:110619. [PMID: 34102600 DOI: 10.1016/j.mehy.2021.110619] [Reference Citation Analysis]
255 Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021;12:772865. [PMID: 34867819 DOI: 10.3389/fendo.2021.772865] [Reference Citation Analysis]
256 Descamps G, Verset L, Trelcat A, Hopkins C, Lechien JR, Journe F, Saussez S. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. Biology (Basel) 2020;9:E235. [PMID: 32824830 DOI: 10.3390/biology9080235] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
257 Anifandis G, Tempest HG, Oliva R, Swanson GM, Simopoulou M, Easley CA, Primig M, Messini CI, Turek PJ, Sutovsky P, Ory SJ, Krawetz SA. COVID-19 and human reproduction: A pandemic that packs a serious punch. Syst Biol Reprod Med 2021;67:3-23. [PMID: 33719829 DOI: 10.1080/19396368.2020.1855271] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
258 Atkinson MA, Powers AC. Distinguishing the real from the hyperglycaemia: does COVID-19 induce diabetes? Lancet Diabetes Endocrinol 2021;9:328-9. [PMID: 33838106 DOI: 10.1016/S2213-8587(21)00087-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
259 Watzky M, de Dieuleveult M, Letessier A, Saint-Ruf C, Miotto B. Assessing the consequences of environmental exposures on the expression of the human receptor and proteases involved in SARS-CoV-2 cell-entry. Environ Res 2021;195:110317. [PMID: 33069705 DOI: 10.1016/j.envres.2020.110317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
260 Memon B, Abdelalim EM. ACE2 function in the pancreatic islet: Implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 2021;:e13733. [PMID: 34561952 DOI: 10.1111/apha.13733] [Reference Citation Analysis]
261 Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021;296:100306. [PMID: 33476648 DOI: 10.1016/j.jbc.2021.100306] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 30.0] [Reference Citation Analysis]
262 Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol 2022;28:275-89. [PMID: 35110950 DOI: 10.3748/wjg.v28.i3.275] [Reference Citation Analysis]
263 Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021;168:105581. [PMID: 33781873 DOI: 10.1016/j.phrs.2021.105581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
264 Farsimadan M, Motamedifar M. SARS-CoV-2 effects on male reproduction: should men be worried?? Hum Fertil (Camb) 2021;:1-11. [PMID: 34382906 DOI: 10.1080/14647273.2021.1962986] [Reference Citation Analysis]
265 Barrantes FJ. Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chem Neurosci 2020;11:2793-803. [PMID: 32845609 DOI: 10.1021/acschemneuro.0c00434] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
266 Ahsan MA, Liu Y, Feng C, Hofestädt R, Chen M. OverCOVID: an integrative web portal for SARS-CoV-2 bioinformatics resources. J Integr Bioinform 2021;18:9-17. [PMID: 33735949 DOI: 10.1515/jib-2020-0046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
267 Takeshita H, Yamamoto K. Tryptophan Metabolism and COVID-19-Induced Skeletal Muscle Damage: Is ACE2 a Key Regulator? Front Nutr 2022;9:868845. [DOI: 10.3389/fnut.2022.868845] [Reference Citation Analysis]
268 Hu W, Song X, Yu H, Zhao L, Zhao Y, Zhao Y. Further comments on the role of ACE-2 positive macrophages in human lung. Cytometry A 2021. [PMID: 34355866 DOI: 10.1002/cyto.a.24484] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
269 [DOI: 10.1101/2020.08.28.272955] [Cited by in Crossref: 24] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
270 Laveneziana P, Straus C, Meiners S. How and to What Extent Immunological Responses to SARS-CoV-2 Shape Pulmonary Function in COVID-19 Patients. Front Physiol 2021;12:628288. [PMID: 34267671 DOI: 10.3389/fphys.2021.628288] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
271 Ebrahimi KH, McCullagh JSO. A lipidomic view of SARS-CoV-2. Biosci Rep 2021;41:BSR20210953. [PMID: 34313294 DOI: 10.1042/BSR20210953] [Reference Citation Analysis]
272 Babkina AS, Ostrova IV, Yadgarov MY, Kuzovlev AN, Grechko AV, Volkov AV, Golubev AM. The Role of Von Willebrand Factor in the Pathogenesis of Pulmonary Vascular Thrombosis in COVID-19. Viruses 2022;14:211. [DOI: 10.3390/v14020211] [Reference Citation Analysis]
273 Jia H, Neptune E, Cui H. Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges. Am J Respir Cell Mol Biol 2021;64:416-25. [PMID: 33296619 DOI: 10.1165/rcmb.2020-0322PS] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
274 Virant-Klun I, Strle F. Human Oocytes Express Both ACE2 and BSG Genes and Corresponding Proteins: Is SARS-CoV-2 Infection Possible? Stem Cell Rev Rep 2021;17:278-84. [PMID: 33403489 DOI: 10.1007/s12015-020-10101-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
275 [DOI: 10.1101/2020.07.23.208041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
276 Gallo G, Calvez V, Savoia C. Hypertension and COVID-19: Current Evidence and Perspectives. High Blood Press Cardiovasc Prev 2022. [PMID: 35184271 DOI: 10.1007/s40292-022-00506-9] [Reference Citation Analysis]
277 Mittal S, Federman HG, Sievert D, Gleeson JG. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist 2021;:10738584211009149. [PMID: 33874789 DOI: 10.1177/10738584211009149] [Reference Citation Analysis]
278 Wang S, Trilling M, Sutter K, Dittmer U, Lu M, Zheng X, Yang D, Liu J. A Crowned Killer's Résumé: Genome, Structure, Receptors, and Origin of SARS-CoV-2. Virol Sin 2020;35:673-84. [PMID: 33068260 DOI: 10.1007/s12250-020-00298-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
279 Chen Z, Du R, Galvan Achi JM, Rong L, Cui Q. SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharm Sin B 2021. [PMID: 34002130 DOI: 10.1016/j.apsb.2021.05.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
280 Kato Y, Nishiyama K, Nishimura A, Noda T, Okabe K, Kusakabe T, Kanda Y, Nishida M. Drug repurposing for the treatment of COVID-19. Journal of Pharmacological Sciences 2022. [DOI: 10.1016/j.jphs.2022.04.007] [Reference Citation Analysis]
281 De La Cruz M, Nunes DP, Bhardwaj V, Subramanyan D, Zaworski C, Roy P, Roy HK. Colonic Epithelial Angiotensin-Converting Enzyme 2 (ACE2) Expression in Blacks and Whites: Potential Implications for Pathogenesis Covid-19 Racial Disparities. J Racial Ethn Health Disparities 2021. [PMID: 33694125 DOI: 10.1007/s40615-021-01004-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
282 Kim E, Attia Z, Woodfint RM, Zeng C, Kim SH, Steiner HE, Shukla RK, Liyanage NPM, Ghimire S, Li J, Renukaradhya GJ, Satoskar AR, Amer AO, Liu SL, Cormet-Boyaka E, Boyaka PN. Inhibition of elastase enhances the adjuvanticity of alum and promotes anti-SARS-CoV-2 systemic and mucosal immunity. Proc Natl Acad Sci U S A 2021;118:e2102435118. [PMID: 34353890 DOI: 10.1073/pnas.2102435118] [Reference Citation Analysis]
283 Hooper JE, Uner M, Priemer DS, Rosenberg A, Chen L. Muscle Biopsy Findings in a Case of SARS-CoV-2-Associated Muscle Injury. J Neuropathol Exp Neurol 2021;80:377-8. [PMID: 33355335 DOI: 10.1093/jnen/nlaa155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
284 Weber S, Hellmuth JC, Scherer C, Muenchhoff M, Mayerle J, Gerbes AL. Liver function test abnormalities at hospital admission are associated with severe course of SARS-CoV-2 infection: a prospective cohort study. Gut 2021:gutjnl-2020-323800. [PMID: 33514597 DOI: 10.1136/gutjnl-2020-323800] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
285 Zecha J, Lee CY, Bayer FP, Meng C, Grass V, Zerweck J, Schnatbaum K, Michler T, Pichlmair A, Ludwig C, Kuster B. Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Mol Cell Proteomics 2020;19:1503-22. [PMID: 32591346 DOI: 10.1074/mcp.RA120.002164] [Cited by in Crossref: 38] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
286 Makowski L, Olson-Sidford W, W-Weisel J. Biological and Clinical Consequences of Integrin Binding via a Rogue RGD Motif in the SARS CoV-2 Spike Protein. Viruses 2021;13:146. [PMID: 33498225 DOI: 10.3390/v13020146] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
287 Shi Y, Li Z, Yang C, Liu C. The role of gut-brain axis in SARA-CoV-2 neuroinvasion: Culprit or innocent bystander? Brain Behav Immun 2021;94:476-7. [PMID: 33600935 DOI: 10.1016/j.bbi.2021.01.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
288 Nguyen TT, Hulme J, Tran HD, Vo TK, Vo GV. The potential impact of COVID-19 on male reproductive health. J Endocrinol Invest 2022. [PMID: 35181849 DOI: 10.1007/s40618-022-01764-z] [Reference Citation Analysis]
289 Collins DP, Steer CJ. Binding of the SARS-CoV-2 Spike Protein to the Asialoglycoprotein Receptor on Human Primary Hepatocytes and Immortalized Hepatocyte-Like Cells by Confocal Analysis. Hepat Med 2021;13:37-44. [PMID: 33883951 DOI: 10.2147/HMER.S301979] [Reference Citation Analysis]
290 Soni S, Jiang Y, Tesfaigzi Y, Hornick JL, Çataltepe S. Comparative analysis of ACE2 protein expression in rodent, non-human primate, and human respiratory tract at baseline and after injury: A conundrum for COVID-19 pathogenesis. PLoS One 2021;16:e0247510. [PMID: 33626084 DOI: 10.1371/journal.pone.0247510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
291 Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. SUBCELLULAR TRANSCRIPTOMICS & PROTEOMICS: A COMPARATIVE METHODS REVIEW. Mol Cell Proteomics 2021;:100186. [PMID: 34922010 DOI: 10.1016/j.mcpro.2021.100186] [Reference Citation Analysis]
292 Bortz RH 3rd, Florez C, Laudermilch E, Wirchnianski AS, Lasso G, Malonis RJ, Georgiev GI, Vergnolle O, Herrera NG, Morano NC, Campbell ST, Orner EP, Mengotto A, Dieterle ME, Fels JM, Haslwanter D, Jangra RK, Celikgil A, Kimmel D, Lee JH, Mariano M, Antonio N, Jose Q, Rivera J, Szymczak WA, Tong K, Barnhill J, Forsell MNE, Ahlm C, Stein DT, Pirofski LA, Goldstein DY, Garforth SJ, Almo SC, Daily JP, Prystowsky MB, Faix JD, Fox AS, Weiss LM, Lai JR, Chandran K. Development, clinical translation, and utility of a COVID-19 antibody test with qualitative and quantitative readouts. medRxiv 2020:2020. [PMID: 32935116 DOI: 10.1101/2020.09.10.20192187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
293 Kehinde IA, Egbejimi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of Ambroxol and Bromhexine Hydrochlorides as potent blockers of molecular interaction between SARS-CoV-2 spike protein and human angiotensin-converting Enzyme-2. Journal of Molecular Graphics and Modelling 2022. [DOI: 10.1016/j.jmgm.2022.108201] [Reference Citation Analysis]
294 Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, Jasuja R, Lawson DQ, Davis K, Rothlauf PW, Liu Z, Jo H, Lee N, Tenneti K, Eschbach JE, Shema Mugisha C, Cousins EM, Cloer EW, Vuong HR, VanBlargan LA, Bailey AL, Gilchuk P, Crowe JE Jr, Diamond MS, Hayes DN, Whelan SPJ, Horani A, Brody SL, Goldfarb D, Major MB, Kutluay SB. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Rep 2021;36:109364. [PMID: 34214467 DOI: 10.1016/j.celrep.2021.109364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
295 Sahai A, Bhandari R, Godwin M, McIntyre T, Chung MK, Iskandar JP, Kamran H, Hariri E, Aggarwal A, Burton R, Kalra A, Bartholomew JR, McCrae KR, Elbadawi A, Bena J, Svensson LG, Kapadia S, Cameron SJ. Effect of aspirin on short-term outcomes in hospitalized patients with COVID-19. Vasc Med 2021;:1358863X211012754. [PMID: 34010070 DOI: 10.1177/1358863X211012754] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
296 Yang K, Holt M, Fan M, Lam V, Yang Y, Ha T, Williams DL, Li C, Wang X. Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Front Immunol 2022;13:868679. [DOI: 10.3389/fimmu.2022.868679] [Reference Citation Analysis]
297 Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: molecular interrelationship and therapeutic implications. Diabetol Metab Syndr 2021;13:23. [PMID: 33648564 DOI: 10.1186/s13098-021-00639-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
298 Yu X. COVID-19 and Novel Coronavirus Cholecystitis. J Clin Gastroenterol 2021;55:368. [PMID: 33405432 DOI: 10.1097/MCG.0000000000001488] [Reference Citation Analysis]
299 Al-Kindi S, Zidar DA. COVID-lateral damage: cardiovascular manifestations of SARS-CoV-2 infection. Transl Res 2021:S1931-5244(21)00268-1. [PMID: 34780967 DOI: 10.1016/j.trsl.2021.11.005] [Reference Citation Analysis]
300 Bellanti F, Lo Buglio A, Vendemiale G. Redox Homeostasis and Immune Alterations in Coronavirus Disease-19. Biology (Basel) 2022;11:159. [PMID: 35205026 DOI: 10.3390/biology11020159] [Reference Citation Analysis]
301 Megyeri K, Dernovics Á, Al-Luhaibi ZII, Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol 2021; 27(23): 3208-3222 [PMID: 34163106 DOI: 10.3748/wjg.v27.i23.3208] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
302 Aschman T, Schneider J, Greuel S, Meinhardt J, Streit S, Goebel HH, Büttnerova I, Elezkurtaj S, Scheibe F, Radke J, Meisel C, Drosten C, Radbruch H, Heppner FL, Corman VM, Stenzel W. Association Between SARS-CoV-2 Infection and Immune-Mediated Myopathy in Patients Who Have Died. JAMA Neurol 2021;78:948-60. [PMID: 34115106 DOI: 10.1001/jamaneurol.2021.2004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
303 Hezavehei M, Shokoohian B, Nasr-Esfahani MH, Shpichka A, Timashev P, Shahverdi AH, Vosough M. Possible Male Reproduction Complications after Coronavirus Pandemic. Cell J 2021;23:382-8. [PMID: 34455712 DOI: 10.22074/cellj.2021.7982] [Reference Citation Analysis]
304 Ning L, Abagna HB, Jiang Q, Liu S, Huang J. Development and application of therapeutic antibodies against COVID-19. Int J Biol Sci 2021;17:1486-96. [PMID: 33907512 DOI: 10.7150/ijbs.59149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
305 Kumar B, Mittal M, Gopalakrishnan M, Garg MK, Misra S. Effect of plasma glucose at admission on COVID-19 mortality: experience from a tertiary hospital. Endocr Connect 2021;10:589-98. [PMID: 33971617 DOI: 10.1530/EC-21-0086] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Martinez MA, Franco S. Impact of COVID-19 in Liver Disease Progression. Hepatol Commun 2021. [PMID: 34222744 DOI: 10.1002/hep4.1745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
307 Maksimowski NA, Scholey JW, Williams VR; Nephrotic Syndrome Study Network (NEPTUNE). Sex and kidney ACE2 expression in primary focal segmental glomerulosclerosis: A NEPTUNE study. PLoS One 2021;16:e0252758. [PMID: 34097714 DOI: 10.1371/journal.pone.0252758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
308 Research Accessibility Team (RAT). The microvascular hypothesis underlying neurologic manifestations of long COVID-19 and possible therapeutic strategies. Cardiovasc Endocrinol Metab 2021;10:193-203. [PMID: 34765889 DOI: 10.1097/XCE.0000000000000253] [Reference Citation Analysis]
309 Bortell N, Aguilera ER, Lenz LL. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog 2021;17:e1009531. [PMID: 33878120 DOI: 10.1371/journal.ppat.1009531] [Reference Citation Analysis]
310 Valyaeva AA, Zharikova AA, Kasianov AS, Vassetzky YS, Sheval EV. Expression of SARS-CoV-2 entry factors in lung epithelial stem cells and its potential implications for COVID-19. Sci Rep 2020;10:17772. [PMID: 33082395 DOI: 10.1038/s41598-020-74598-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
311 Brown EEF, Rezaei R, Jamieson TR, Dave J, Martin NT, Singaravelu R, Crupi MJF, Boulton S, Tucker S, Duong J, Poutou J, Pelin A, Yasavoli-Sharahi H, Taha Z, Arulanandam R, Surendran A, Ghahremani M, Austin B, Matar C, Diallo JS, Bell JC, Ilkow CS, Azad T. Characterization of Critical Determinants of ACE2-SARS CoV-2 RBD Interaction. Int J Mol Sci 2021;22:2268. [PMID: 33668756 DOI: 10.3390/ijms22052268] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
312 Vlahopoulos S, Wang K, Xue Y, Zheng X, Boldogh I, Pan L. Endothelial Dysfunction through Oxidatively Generated Epigenetic Mark in Respiratory Viral Infections. Cells 2021;10:3067. [PMID: 34831290 DOI: 10.3390/cells10113067] [Reference Citation Analysis]
313 Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2 Spike protein: structural and functional implications. Current Opinion in Structural Biology 2022. [DOI: 10.1016/j.sbi.2022.102388] [Reference Citation Analysis]
314 Martinez FO, Combes TW, Orsenigo F, Gordon S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine 2020;59:102964. [PMID: 32861199 DOI: 10.1016/j.ebiom.2020.102964] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
315 Simons P, Rinaldi DA, Bondu V, Kell AM, Bradfute S, Lidke DS, Buranda T. Integrin activation is an essential component of SARS-CoV-2 infection. Sci Rep 2021;11:20398. [PMID: 34650161 DOI: 10.1038/s41598-021-99893-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
316 Xu J, Lazartigues E. Expression of ACE2 in Human Neurons Supports the Neuro-Invasive Potential of COVID-19 Virus. Cell Mol Neurobiol 2020. [PMID: 32623546 DOI: 10.1007/s10571-020-00915-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
317 Rommasi F, Nasiri MJ, Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol Cell Biochem 2022. [PMID: 35013850 DOI: 10.1007/s11010-021-04325-9] [Reference Citation Analysis]
318 Luo R, Delaunay-Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021;23:2339-63. [PMID: 33769683 DOI: 10.1111/1462-2920.15487] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
319 Zamorano Cuervo N, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife 2020;9:e61390. [PMID: 33164751 DOI: 10.7554/eLife.61390] [Cited by in Crossref: 60] [Cited by in F6Publishing: 44] [Article Influence: 30.0] [Reference Citation Analysis]
320 Sahoo S, Jhunjhunwala S, Jolly MK. The Good, The Bad and The Ugly: A Mathematical Model Investigates the Differing Outcomes Among CoVID-19 Patients. J Indian Inst Sci 2020;:1-9. [PMID: 33041543 DOI: 10.1007/s41745-020-00205-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
321 Signorini L, Dolci M, Castelnuovo N, Crespi L, Incorvaia B, Bagnoli P, Parapini S, Basilico N, Galli C, Ambrogi F, Pariani E, Binda S, Ticozzi R, Ferrante P, Delbue S. Longitudinal, virological, and serological assessment of hospitalized COVID-19 patients. J Neurovirol 2022. [PMID: 34997473 DOI: 10.1007/s13365-021-01029-0] [Reference Citation Analysis]
322 Yu S, Zheng X, Zhou B, Li J, Chen M, Deng R, Wong G, Lavillette D, Meng G. SARS-CoV-2 spike engagement of ACE2 primes S2' site cleavage and fusion initiation. Proc Natl Acad Sci U S A 2022;119:e2111199119. [PMID: 34930824 DOI: 10.1073/pnas.2111199119] [Reference Citation Analysis]
323 Hamouche W, Bisserier M, Brojakowska A, Eskandari A, Fish K, Goukassian DA, Hadri L. Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. J Mol Cell Cardiol 2021;153:72-85. [PMID: 33373644 DOI: 10.1016/j.yjmcc.2020.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
324 Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17:11-30. [PMID: 33188364 DOI: 10.1038/s41574-020-00435-4] [Cited by in Crossref: 115] [Cited by in F6Publishing: 113] [Article Influence: 57.5] [Reference Citation Analysis]
325 Omenn GS, Lane L, Overall CM, Cristea IM, Corrales FJ, Lindskog C, Paik YK, Van Eyk JE, Liu S, Pennington SR, Snyder MP, Baker MS, Bandeira N, Aebersold R, Moritz RL, Deutsch EW. Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. J Proteome Res 2020;19:4735-46. [PMID: 32931287 DOI: 10.1021/acs.jproteome.0c00485] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
326 Ibrahim S, Monaco GSF, Sims EK. Not so sweet and simple: impacts of SARS-CoV-2 on the β cell. Islets 2021;13:66-79. [PMID: 33970787 DOI: 10.1080/19382014.2021.1909970] [Reference Citation Analysis]
327 Kazakou P, Lambadiari V, Ikonomidis I, Kountouri A, Panagopoulos G, Athanasopoulos S, Korompoki E, Kalomenidis I, Dimopoulos MA, Mitrakou A. Diabetes and COVID-19; A Bidirectional Interplay. Front Endocrinol 2022;13:780663. [DOI: 10.3389/fendo.2022.780663] [Reference Citation Analysis]