BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014;34:6896-909. [PMID: 24828644 DOI: 10.1523/JNEUROSCI.5344-13.2014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Asano T, Ishizuka T, Morishima K, Yawo H. Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep 2015;5:8317. [PMID: 25661648 DOI: 10.1038/srep08317] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
2 Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019;406:314-24. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
3 Shaw ND, Butler JP, Nemati S, Kangarloo T, Ghassemi M, Malhotra A, Hall JE. Accumulated deep sleep is a powerful predictor of LH pulse onset in pubertal children. J Clin Endocrinol Metab 2015;100:1062-70. [PMID: 25490277 DOI: 10.1210/jc.2014-3563] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
4 Mota CMD. Melanin-concentrating hormone neurons affect adipose tissues and modulate weight gain. J Physiol 2021. [PMID: 34647320 DOI: 10.1113/JP282373] [Reference Citation Analysis]
5 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
6 Brown J, Sagante A, Mayer T, Wright A, Bugescu R, Fuller PM, Leinninger G. Lateral Hypothalamic Area Neurotensin Neurons Are Required for Control of Orexin Neurons and Energy Balance. Endocrinology 2018;159:3158-76. [PMID: 30010830 DOI: 10.1210/en.2018-00311] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
7 Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2019;224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
8 Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018;120:12-20. [PMID: 30149182 DOI: 10.1016/j.nbd.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
9 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
10 Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017;13:235-43. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
11 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
12 Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schöne C, Aitta-Aho T, Adamantidis A, Burdakov D. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 2015;35:5435-41. [PMID: 25855162 DOI: 10.1523/JNEUROSCI.5269-14.2015] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 11.3] [Reference Citation Analysis]
13 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
15 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
16 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
17 Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015;9:475. [PMID: 26733789 DOI: 10.3389/fnins.2015.00475] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
18 Ye H, Cui XY, Ding H, Cui SY, Hu X, Liu YT, Zhao HL, Zhang YH. Melanin-Concentrating Hormone (MCH) and MCH-R1 in the Locus Coeruleus May Be Involved in the Regulation of Depressive-Like Behavior. Int J Neuropsychopharmacol 2018;21:1128-37. [PMID: 30335150 DOI: 10.1093/ijnp/pyy088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Tsunematsu T, Patel AA, Onken A, Sakata S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. Elife 2020;9:e52244. [PMID: 31934862 DOI: 10.7554/eLife.52244] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
20 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
21 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
22 Setsuie R, Tamura K, Miyamoto K, Watanabe T, Takeda M, Miyashita Y. Off-Peak 594-nm Light Surpasses On-Peak 532-nm Light in Silencing Distant ArchT-Expressing Neurons In Vivo. iScience 2020;23:101276. [PMID: 32599561 DOI: 10.1016/j.isci.2020.101276] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2019;42:zsy253. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
25 Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021;26:2912-28. [PMID: 33057171 DOI: 10.1038/s41380-020-00906-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Regan MD, Flynn-Evans EE, Griko YV, Kilduff TS, Rittenberger JC, Ruskin KJ, Buck CL. Shallow metabolic depression and human spaceflight: a feasible first step. J Appl Physiol (1985) 2020;128:637-47. [PMID: 31999524 DOI: 10.1152/japplphysiol.00725.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
27 Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, Mohan SK, Mahalakshmi AM, Ray B, Tuladhar S, Chang S, Chidambaram SB, Sakharkar MK, Guillemin GJ, Qoronfleh MW, Ojcius DM. Sleep Deprivation and Neurological Disorders. Biomed Res Int 2020;2020:5764017. [PMID: 33381558 DOI: 10.1155/2020/5764017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
28 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
29 Singh C, Rihel J, Prober DA. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017;27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
30 Du M, Huang L, Zheng J, Xi Y, Dai Y, Zhang W, Yan W, Tao G, Qiu J, So KF, Ren C, Zhou S. Flexible Fiber Probe for Efficient Neural Stimulation and Detection. Adv Sci (Weinh) 2020;7:2001410. [PMID: 32775173 DOI: 10.1002/advs.202001410] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
31 Natsubori A, Takata N, Tanaka KF. Observation and manipulation of glial cell function by virtue of sufficient probe expression. Front Cell Neurosci 2015;9:176. [PMID: 26005405 DOI: 10.3389/fncel.2015.00176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
32 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
33 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
34 Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro 2016;3:ENEURO. [PMID: 27294196 DOI: 10.1523/ENEURO.0077-16.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
35 Fuller PM, Yamanaka A, Lazarus M. How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature (Austin) 2015;2:406-17. [PMID: 27227054 DOI: 10.1080/23328940.2015.1075095] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
36 Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol 2016;26:2137-43. [PMID: 27426511 DOI: 10.1016/j.cub.2016.05.078] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 15.3] [Reference Citation Analysis]
37 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
39 Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2020;43:zsz296. [PMID: 31919524 DOI: 10.1093/sleep/zsz296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
40 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
41 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
42 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
43 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
44 Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, Liu M, Shiromani PJ. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019;39:4986-98. [PMID: 31036764 DOI: 10.1523/JNEUROSCI.0305-19.2019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
45 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
46 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016;336:102-13. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
48 Yamaguchi H, de Lecea L. In vivo cell type-specific CRISPR gene editing for sleep research. J Neurosci Methods 2019;316:99-102. [PMID: 30439390 DOI: 10.1016/j.jneumeth.2018.10.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Okamoto K, Yamasaki M, Takao K, Soya S, Iwasaki M, Sasaki K, Magoori K, Sakakibara I, Miyakawa T, Mieda M, Watanabe M, Sakai J, Yanagisawa M, Sakurai T. QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior. PLoS One 2016;11:e0164716. [PMID: 27835635 DOI: 10.1371/journal.pone.0164716] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
50 Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, Dong Y, Tseng GC, Fang J, Seney ML, Huang YH. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021;26:3152-68. [PMID: 33093653 DOI: 10.1038/s41380-020-00921-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016;28:46-54. [PMID: 26447948 DOI: 10.1016/j.smrv.2015.08.005] [Cited by in Crossref: 126] [Cited by in F6Publishing: 103] [Article Influence: 18.0] [Reference Citation Analysis]
52 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019;24:1284-95. [PMID: 30377299 DOI: 10.1038/s41380-018-0291-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
53 Morin LP. A Path to Sleep Is through the Eye. eNeuro 2015;2:ENEURO. [PMID: 26464977 DOI: 10.1523/ENEURO.0069-14.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
54 Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014;5:165. [PMID: 25309500 DOI: 10.3389/fneur.2014.00165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
55 Wu Z, Kim ER, Sun H, Xu Y, Mangieri LR, Li DP, Pan HL, Xu Y, Arenkiel BR, Tong Q. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J Neurosci 2015;35:3312-8. [PMID: 25716832 DOI: 10.1523/JNEUROSCI.3720-14.2015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
56 Qiu MH, Chen MC, Fuller PM, Lu J. Stimulation of the Pontine Parabrachial Nucleus Promotes Wakefulness via Extra-thalamic Forebrain Circuit Nodes. Curr Biol 2016;26:2301-12. [PMID: 27546576 DOI: 10.1016/j.cub.2016.07.054] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
57 Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 2020;6:eabd0384. [PMID: 33158870 DOI: 10.1126/sciadv.abd0384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
58 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
60 Joiner WJ. The Neurobiological Basis of Sleep and Sleep Disorders. Physiology (Bethesda) 2018;33:317-27. [PMID: 30109824 DOI: 10.1152/physiol.00013.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
61 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
62 Park SH, Baik J, Hong J, Antila H, Kurland B, Chung S, Weber F. A probabilistic model for the ultradian timing of REM sleep in mice. PLoS Comput Biol 2021;17:e1009316. [PMID: 34432801 DOI: 10.1371/journal.pcbi.1009316] [Reference Citation Analysis]
63 Dittrich L, Petese A, Jackson WS. The natural Disc1-deletion present in several inbred mouse strains does not affect sleep. Sci Rep 2017;7:5665. [PMID: 28720848 DOI: 10.1038/s41598-017-06015-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
64 Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep. 2016;6:36039. [PMID: 27824065 DOI: 10.1038/srep36039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
65 Tsunematsu T. Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. Adv Exp Med Biol 2021;1293:391-406. [PMID: 33398828 DOI: 10.1007/978-981-15-8763-4_25] [Reference Citation Analysis]
66 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
67 Orikasa C. Neural Contributions of the Hypothalamus to Parental Behaviour. Int J Mol Sci 2021;22:6998. [PMID: 34209728 DOI: 10.3390/ijms22136998] [Reference Citation Analysis]
68 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
69 Kato Y, Katsumata H, Inutsuka A, Yamanaka A, Onaka T, Minami S, Orikasa C. Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Sci Rep 2021;11:3348. [PMID: 33558633 DOI: 10.1038/s41598-021-82773-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
71 Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015;6:190. [PMID: 26388832 DOI: 10.3389/fneur.2015.00190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
72 Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019;365:1308-13. [PMID: 31604241 DOI: 10.1126/science.aax9238] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 25.5] [Reference Citation Analysis]
73 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
74 Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015;22:761-76. [PMID: 26365177 DOI: 10.1016/j.cmet.2015.08.016] [Cited by in Crossref: 94] [Cited by in F6Publishing: 87] [Article Influence: 13.4] [Reference Citation Analysis]
75 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
76 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
77 Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021;41:5440-52. [PMID: 34006590 DOI: 10.1523/JNEUROSCI.2912-20.2021] [Reference Citation Analysis]
78 Ikoma Y, Kusumoto-Yoshida I, Yamanaka A, Ootsuka Y, Kuwaki T. Inactivation of Serotonergic Neurons in the Rostral Medullary Raphé Attenuates Stress-Induced Tachypnea and Tachycardia in Mice. Front Physiol 2018;9:832. [PMID: 30050449 DOI: 10.3389/fphys.2018.00832] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
79 Gao T, Li J, Watanabe Y, Hung C, Yamanaka A, Horie K, Yanagisawa M, Ohsawa M, Kume K. GI-SleepNet: A Highly Versatile Image-Based Sleep Classification Using a Deep Learning Algorithm. Clocks Sleep 2021;3:581-97. [PMID: 34842647 DOI: 10.3390/clockssleep3040041] [Reference Citation Analysis]