BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006;26:13400-10. [PMID: 17182791 DOI: 10.1523/JNEUROSCI.4332-06.2006] [Cited by in Crossref: 308] [Cited by in F6Publishing: 153] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Imperatore R, D'Angelo L, Safari O, Motlagh HA, Piscitelli F, de Girolamo P, Cristino L, Varricchio E, di Marzo V, Paolucci M. Overlapping Distribution of Orexin and Endocannabinoid Receptors and Their Functional Interaction in the Brain of Adult Zebrafish. Front Neuroanat 2018;12:62. [PMID: 30104964 DOI: 10.3389/fnana.2018.00062] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
2 Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016;39:357-68. [PMID: 26446112 DOI: 10.5665/sleep.5444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Hoffman EJ, Turner KJ, Fernandez JM, Cifuentes D, Ghosh M, Ijaz S, Jain RA, Kubo F, Bill BR, Baier H, Granato M, Barresi MJ, Wilson SW, Rihel J, State MW, Giraldez AJ. Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron 2016;89:725-33. [PMID: 26833134 DOI: 10.1016/j.neuron.2015.12.039] [Cited by in Crossref: 97] [Cited by in F6Publishing: 75] [Article Influence: 16.2] [Reference Citation Analysis]
4 Leung LC, Wang GX, Madelaine R, Skariah G, Kawakami K, Deisseroth K, Urban AE, Mourrain P. Neural signatures of sleep in zebrafish. Nature 2019;571:198-204. [PMID: 31292557 DOI: 10.1038/s41586-019-1336-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 13.3] [Reference Citation Analysis]
5 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
6 Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017;44:80-8. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
7 Limana da Silveira T, Lopes Machado M, Bicca Obetine Baptista F, Farina Gonçalves D, Duarte Hartmann D, Marafiga Cordeiro L, Franzen da Silva A, Lenz Dalla Corte C, Aschner M, Antunes Soares FA. Caenorhabditis elegans as a model for studies on quinolinic acid-induced NMDAR-dependent glutamatergic disorders. Brain Res Bull 2021;175:90-8. [PMID: 34271120 DOI: 10.1016/j.brainresbull.2021.07.007] [Reference Citation Analysis]
8 McLean DL, Fetcho JR. Movement, technology and discovery in the zebrafish. Curr Opin Neurobiol 2011;21:110-5. [PMID: 20970321 DOI: 10.1016/j.conb.2010.09.011] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 3.8] [Reference Citation Analysis]
9 Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020;2:442-65. [PMID: 33114225 DOI: 10.3390/clockssleep2040033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Equihua AC, De La Herrán-Arita AK, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 2013;4:163. [PMID: 24416019 DOI: 10.3389/fphar.2013.00163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
11 Grafe LA, Bhatnagar S. The contribution of orexins to sex differences in the stress response. Brain Res 2020;1731:145893. [PMID: 30081036 DOI: 10.1016/j.brainres.2018.07.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
12 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
13 Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 2010;327:348-51. [PMID: 20075256 DOI: 10.1126/science.1183090] [Cited by in Crossref: 496] [Cited by in F6Publishing: 441] [Article Influence: 41.3] [Reference Citation Analysis]
14 Enriquez KD, Gupta AR, Hoffman EJ. Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Front Psychiatry 2021;12:716673. [PMID: 34690830 DOI: 10.3389/fpsyt.2021.716673] [Reference Citation Analysis]
15 Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov 2018;4:45. [PMID: 30302279 DOI: 10.1038/s41420-018-0109-7] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
16 Chen S, Chiu CN, McArthur KL, Fetcho JR, Prober DA. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 2016;13:147-50. [PMID: 26657556 DOI: 10.1038/nmeth.3691] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
17 Dvir H, Elbaz I, Havlin S, Appelbaum L, Ivanov PC, Bartsch RP. Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome. Sci Adv 2018;4:eaar6277. [PMID: 29707639 DOI: 10.1126/sciadv.aar6277] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
18 Kashiwagi M, Hayashi Y. The existence of two states of sleep as a common trait in various animals and its molecular and neuronal mechanisms. Current Opinion in Physiology 2020;15:197-202. [DOI: 10.1016/j.cophys.2020.03.007] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen A, Singh C, Oikonomou G, Prober DA. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017;4:ENEURO. [PMID: 28275716 DOI: 10.1523/ENEURO.0286-16.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
20 Ben-Moshe Z, Foulkes NS, Gothilf Y. Functional development of the circadian clock in the zebrafish pineal gland. Biomed Res Int 2014;2014:235781. [PMID: 24839600 DOI: 10.1155/2014/235781] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
21 Colwill RM, Creton R. Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 2011;22:63-73. [PMID: 21572576 DOI: 10.1515/RNS.2011.008] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 10.2] [Reference Citation Analysis]
22 Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014;10:e1004615. [PMID: 25255244 DOI: 10.1371/journal.pgen.1004615] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
23 Özcan GG, Lim S, Leighton P, Allison WT, Rihel J. Sleep is bi-directionally modified by amyloid beta oligomers. Elife 2020;9:e53995. [PMID: 32660691 DOI: 10.7554/eLife.53995] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
24 Nishimura Y, Okabe S, Sasagawa S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 2015;6:257. [PMID: 26578964 DOI: 10.3389/fphar.2015.00257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
25 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
26 Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One 2013;8:e74606. [PMID: 24058598 DOI: 10.1371/journal.pone.0074606] [Cited by in Crossref: 112] [Cited by in F6Publishing: 100] [Article Influence: 12.4] [Reference Citation Analysis]
27 Savoldi R, Polari D, Pinheiro-da-Silva J, Silva PF, Lobao-Soares B, Yonamine M, Freire FAM, Luchiari AC. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish. Front Behav Neurosci 2017;11:139. [PMID: 28804451 DOI: 10.3389/fnbeh.2017.00139] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
28 Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019;43:1702-13. [PMID: 31206717 DOI: 10.1111/acer.14126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
29 Gehrman PR, Pfeiffenberger C, Byrne E. The Role of Genes in the Insomnia Phenotype. Sleep Med Clin 2013;8:323-31. [PMID: 24072990 DOI: 10.1016/j.jsmc.2013.04.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
30 Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS One 2015;10:e0139504. [PMID: 26436892 DOI: 10.1371/journal.pone.0139504] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
31 McLean DL, Fetcho JR. Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 2008;68:817-34. [PMID: 18383546 DOI: 10.1002/dneu.20617] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 3.7] [Reference Citation Analysis]
32 Sehgal A, Mignot E. Genetics of sleep and sleep disorders. Cell 2011;146:194-207. [PMID: 21784243 DOI: 10.1016/j.cell.2011.07.004] [Cited by in Crossref: 209] [Cited by in F6Publishing: 180] [Article Influence: 19.0] [Reference Citation Analysis]
33 Waxman JS, Yelon D. Zebrafish retinoic acid receptors function as context-dependent transcriptional activators. Dev Biol 2011;352:128-40. [PMID: 21276787 DOI: 10.1016/j.ydbio.2011.01.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
34 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
35 Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. Elife 2018;7:e32637. [PMID: 29405117 DOI: 10.7554/eLife.32637] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
36 Raizen DM, Zimmerman JE. Non-mammalian genetic model systems in sleep research. Sleep Med Clin 2011;6:131-9. [PMID: 21731528 DOI: 10.1016/j.jsmc.2011.04.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
37 Rihel J, Schier AF. Sites of action of sleep and wake drugs: insights from model organisms. Curr Opin Neurobiol 2013;23:831-40. [PMID: 23706898 DOI: 10.1016/j.conb.2013.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
38 Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021;15:768762. [PMID: 34803618 DOI: 10.3389/fnsys.2021.768762] [Reference Citation Analysis]
39 Emran F, Rihel J, Adolph AR, Dowling JE. Zebrafish larvae lose vision at night. Proc Natl Acad Sci U S A 2010;107:6034-9. [PMID: 20224035 DOI: 10.1073/pnas.0914718107] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 5.6] [Reference Citation Analysis]
40 Moustafa AA. On and Off switches in the brain. Front Behav Neurosci 2015;9:114. [PMID: 25972796 DOI: 10.3389/fnbeh.2015.00114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
41 Sorribes A, Thornorsteinsson H, Arnardóttir H, Jóhannesdóttir IÞ, Sigurgeirsson B, de Polavieja GG, Karlsson KÆ. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans. Front Neural Circuits 2013;7:178. [PMID: 24312015 DOI: 10.3389/fncir.2013.00178] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
42 Burgess HA, Granato M. The neurogenetic frontier--lessons from misbehaving zebrafish. Brief Funct Genomic Proteomic 2008;7:474-82. [PMID: 18836206 DOI: 10.1093/bfgp/eln039] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
43 Moore NS, Mans RA, McCauley MK, Allgood CS, Barksdale KA. Critical Effects on Akt Signaling in Adult Zebrafish Brain Following Alterations in Light Exposure. Cells 2021;10:637. [PMID: 33809219 DOI: 10.3390/cells10030637] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA. Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 2012;22:2042-7. [PMID: 23000151 DOI: 10.1016/j.cub.2012.08.016] [Cited by in Crossref: 159] [Cited by in F6Publishing: 146] [Article Influence: 15.9] [Reference Citation Analysis]
45 Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M. A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 2010;5:e14370. [PMID: 21179424 DOI: 10.1371/journal.pone.0014370] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
46 Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P, Mignot E. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010;68:87-98. [PMID: 20920793 DOI: 10.1016/j.neuron.2010.09.006] [Cited by in Crossref: 119] [Cited by in F6Publishing: 118] [Article Influence: 9.9] [Reference Citation Analysis]
47 Mackiewicz M, Zimmerman JE, Shockley KR, Churchill GA, Pack AI. What are microarrays teaching us about sleep? Trends Mol Med 2009;15:79-87. [PMID: 19162550 DOI: 10.1016/j.molmed.2008.12.002] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.2] [Reference Citation Analysis]
48 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
49 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
50 Chen J, Das SR, La Du J, Corvi MM, Bai C, Chen Y, Liu X, Zhu G, Tanguay RL, Dong Q, Huang C. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring. Environ Toxicol Chem 2013;32:201-6. [PMID: 23059794 DOI: 10.1002/etc.2031] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
51 Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013;7:58. [PMID: 23576957 DOI: 10.3389/fncir.2013.00058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
52 Kayser MS, Biron D. Sleep and Development in Genetically Tractable Model Organisms. Genetics 2016;203:21-33. [PMID: 27183564 DOI: 10.1534/genetics.116.189589] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 9.4] [Reference Citation Analysis]
53 Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep 2008;31:453-64. [PMID: 18457232 DOI: 10.1093/sleep/31.4.453] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 2.9] [Reference Citation Analysis]
54 Raizen DM, Wu MN. Genome-wide association studies of sleep disorders. Chest 2011;139:446-52. [PMID: 21285061 DOI: 10.1378/chest.10-1313] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
55 Taylor KL, Grant NJ, Temperley ND, Patton EE. Small molecule screening in zebrafish: an in vivo approach to identifying new chemical tools and drug leads. Cell Commun Signal 2010;8:11. [PMID: 20540792 DOI: 10.1186/1478-811X-8-11] [Cited by in Crossref: 63] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
56 Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021;14:718951. [PMID: 34335183 DOI: 10.3389/fnmol.2021.718951] [Reference Citation Analysis]
57 Long SM, Liang FY, Wu Q, Lu XL, Yao XL, Li SC, Li J, Su H, Pang JY, Pei Z. Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish. Mar Drugs 2014;12:3307-22. [PMID: 24886868 DOI: 10.3390/md12063307] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
58 Appelbaum L, Wang GX, Maro GS, Mori R, Tovin A, Marin W, Yokogawa T, Kawakami K, Smith SJ, Gothilf Y, Mignot E, Mourrain P. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Proc Natl Acad Sci U S A 2009;106:21942-7. [PMID: 19966231 DOI: 10.1073/pnas.906637106] [Cited by in Crossref: 116] [Cited by in F6Publishing: 113] [Article Influence: 8.9] [Reference Citation Analysis]
59 Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. Elife 2020;9:e54491. [PMID: 33337320 DOI: 10.7554/eLife.54491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Melanson A, Mejias JF, Jun JJ, Maler L, Longtin A. Nonstationary Stochastic Dynamics Underlie Spontaneous Transitions between Active and Inactive Behavioral States. eNeuro 2017;4:ENEURO. [PMID: 28374017 DOI: 10.1523/ENEURO.0355-16.2017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
61 Kurrasch DM, Nevin LM, Wong JS, Baier H, Ingraham HA. Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish. Neural Dev 2009;4:22. [PMID: 19549326 DOI: 10.1186/1749-8104-4-22] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 1.7] [Reference Citation Analysis]
62 Duboué ER, Borowsky RL. Altered rest-activity patterns evolve via circadian independent mechanisms in cave adapted balitorid loaches. PLoS One 2012;7:e30868. [PMID: 22348026 DOI: 10.1371/journal.pone.0030868] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
63 Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 2015;52:194-209. [PMID: 26348672 DOI: 10.1016/j.ntt.2015.08.010] [Cited by in Crossref: 99] [Cited by in F6Publishing: 94] [Article Influence: 14.1] [Reference Citation Analysis]
64 Lobao-Soares B, Eduardo-da-Silva P, Amarilha H, Pinheiro-da-Silva J, Silva PF, Luchiari AC. It's Tea Time: Interference of Ayahuasca Brew on Discriminative Learning in Zebrafish. Front Behav Neurosci 2018;12:190. [PMID: 30210319 DOI: 10.3389/fnbeh.2018.00190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020;96:109728. [PMID: 31394141 DOI: 10.1016/j.pnpbp.2019.109728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
66 Yokogawa T, Hannan MC, Burgess HA. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 2012;32:15205-15. [PMID: 23100441 DOI: 10.1523/JNEUROSCI.1019-12.2012] [Cited by in Crossref: 81] [Cited by in F6Publishing: 50] [Article Influence: 9.0] [Reference Citation Analysis]
67 Shafer MER, Sawh AN, Schier AF. Gene family evolution underlies cell-type diversification in the hypothalamus of teleosts. Nat Ecol Evol 2021. [PMID: 34824389 DOI: 10.1038/s41559-021-01580-3] [Reference Citation Analysis]
68 . Recent Papers on Zebrafish And Other Aquarium Fish Models. Zebrafish 2007;4:79-90. [DOI: 10.1089/zeb.2006.9991] [Reference Citation Analysis]
69 Wang H, Yang Z, Li X, Huang D, Yu S, He J, Li Y, Yan J. Single-cell in vivo imaging of cellular circadian oscillators in zebrafish. PLoS Biol 2020;18:e3000435. [PMID: 32168317 DOI: 10.1371/journal.pbio.3000435] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
70 Jay M, De Faveri F, McDearmid JR. Firing dynamics and modulatory actions of supraspinal dopaminergic neurons during zebrafish locomotor behavior. Curr Biol 2015;25:435-44. [PMID: 25639243 DOI: 10.1016/j.cub.2014.12.033] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
71 Gandhi AV, Mosser EA, Oikonomou G, Prober DA. Melatonin is required for the circadian regulation of sleep. Neuron 2015;85:1193-9. [PMID: 25754820 DOI: 10.1016/j.neuron.2015.02.016] [Cited by in Crossref: 123] [Cited by in F6Publishing: 100] [Article Influence: 17.6] [Reference Citation Analysis]
72 Ronneberger O, Liu K, Rath M, Rueβ D, Mueller T, Skibbe H, Drayer B, Schmidt T, Filippi A, Nitschke R, Brox T, Burkhardt H, Driever W. ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nat Methods 2012;9:735-42. [PMID: 22706672 DOI: 10.1038/nmeth.2076] [Cited by in Crossref: 98] [Cited by in F6Publishing: 69] [Article Influence: 9.8] [Reference Citation Analysis]
73 Wang F, Ren D, Liang X, Ke S, Zhang B, Hu B, Song X, Wang X. A long noncoding RNA cluster-based genomic locus maintains proper development and visual function. Nucleic Acids Res 2019;47:6315-29. [PMID: 31127312 DOI: 10.1093/nar/gkz444] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
74 Hirano A, Hsu PK, Zhang L, Xing L, McMahon T, Yamazaki M, Ptáček LJ, Fu YH. DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A 2018;115:3434-9. [PMID: 29531056 DOI: 10.1073/pnas.1801693115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
75 Burton CE, Zhou Y, Bai Q, Burton EA. Spectral properties of the zebrafish visual motor response. Neurosci Lett 2017;646:62-7. [PMID: 28267562 DOI: 10.1016/j.neulet.2017.03.002] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
76 Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 2015;35:2572-87. [PMID: 25673850 DOI: 10.1523/JNEUROSCI.2551-14.2015] [Cited by in Crossref: 74] [Cited by in F6Publishing: 29] [Article Influence: 10.6] [Reference Citation Analysis]
77 Liu J, Merkle FT, Gandhi AV, Gagnon JA, Woods IG, Chiu CN, Shimogori T, Schier AF, Prober DA. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 2015;142:1113-24. [PMID: 25725064 DOI: 10.1242/dev.117424] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
78 Lovett-Barron M, Andalman AS, Allen WE, Vesuna S, Kauvar I, Burns VM, Deisseroth K. Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017;171:1411-1423.e17. [PMID: 29103613 DOI: 10.1016/j.cell.2017.10.021] [Cited by in Crossref: 78] [Cited by in F6Publishing: 58] [Article Influence: 15.6] [Reference Citation Analysis]
79 Horstick EJ, Mueller T, Burgess HA. Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates. J Neurogenet 2016;30:122-32. [PMID: 27293113 DOI: 10.1080/01677063.2016.1177048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
80 Huang H, Huang C, Wang L, Ye X, Bai C, Simonich MT, Tanguay RL, Dong Q. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). Aquat Toxicol 2010;98:139-47. [PMID: 20171748 DOI: 10.1016/j.aquatox.2010.02.003] [Cited by in Crossref: 164] [Cited by in F6Publishing: 156] [Article Influence: 13.7] [Reference Citation Analysis]
81 Elbaz I, Foulkes NS, Gothilf Y, Appelbaum L. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 2013;7:9. [PMID: 23378829 DOI: 10.3389/fncir.2013.00009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
82 Lloyd E, Chhouk B, Conith AJ, Keene AC, Albertson RC. Diversity in rest-activity patterns among Lake Malawi cichlid fishes suggests a novel axis of habitat partitioning. J Exp Biol 2021;224:jeb242186. [PMID: 33658242 DOI: 10.1242/jeb.242186] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Oikonomou G, Altermatt M, Zhang RW, Coughlin GM, Montz C, Gradinaru V, Prober DA. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019;103:686-701.e8. [PMID: 31248729 DOI: 10.1016/j.neuron.2019.05.038] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 18.7] [Reference Citation Analysis]
84 Burton AH, Bai Q, Burton EA. Sinusoidal analysis reveals a non-linear and dopamine-dependent relationship between ambient illumination and motor activity in larval zebrafish. Neurosci Lett 2021;761:136121. [PMID: 34293416 DOI: 10.1016/j.neulet.2021.136121] [Reference Citation Analysis]
85 Zhou Y, Cattley RT, Cario CL, Bai Q, Burton EA. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nat Protoc 2014;9:1533-48. [PMID: 24901738 DOI: 10.1038/nprot.2014.094] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
86 Liu Y, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhang M, Ma P, Leung YF. Statistical Analysis of Zebrafish Locomotor Response. PLoS One 2015;10:e0139521. [PMID: 26437184 DOI: 10.1371/journal.pone.0139521] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
87 Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol 2018;51:132-45. [PMID: 29932958 DOI: 10.1016/j.yfrne.2018.06.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
88 Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Lerer-Goldshtein T, Appelbaum L. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. Elife 2015;4:e08638. [PMID: 26426478 DOI: 10.7554/eLife.08638] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
89 Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022;15:873520. [DOI: 10.3389/fnmol.2022.873520] [Reference Citation Analysis]
90 Li SB, Jones JR, de Lecea L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 2016;18:7. [PMID: 26733323 DOI: 10.1007/s11920-015-0639-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
91 Ingebretson JJ, Masino MA. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies. Front Neural Circuits 2013;7:109. [PMID: 23772207 DOI: 10.3389/fncir.2013.00109] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
92 Singh C, Rihel J, Prober DA. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017;27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
93 Venincasa MJ, Randlett O, Sumathipala SH, Bindernagel R, Stark MJ, Yan Q, Sloan SA, Buglo E, Meng QC, Engert F, Züchner S, Kelz MB, Syed S, Dallman JE. Elevated preoptic brain activity in zebrafish glial glycine transporter mutants is linked to lethargy-like behaviors and delayed emergence from anesthesia. Sci Rep 2021;11:3148. [PMID: 33542258 DOI: 10.1038/s41598-021-82342-w] [Reference Citation Analysis]
94 Förster D, Arnold-Ammer I, Laurell E, Barker AJ, Fernandes AM, Finger-Baier K, Filosa A, Helmbrecht TO, Kölsch Y, Kühn E, Robles E, Slanchev K, Thiele TR, Baier H, Kubo F. Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools. Sci Rep 2017;7:5230. [PMID: 28701772 DOI: 10.1038/s41598-017-04657-x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 6.6] [Reference Citation Analysis]
95 Zhong Y, Ye Q, Chen C, Wang M, Wang H. Ezh2 promotes clock function and hematopoiesis independent of histone methyltransferase activity in zebrafish. Nucleic Acids Res 2018;46:3382-99. [PMID: 29447387 DOI: 10.1093/nar/gky101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
96 Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci 2007;27:13624-34. [PMID: 18077674 DOI: 10.1523/JNEUROSCI.2858-07.2007] [Cited by in Crossref: 114] [Cited by in F6Publishing: 78] [Article Influence: 8.1] [Reference Citation Analysis]
97 Blackiston DJ, Levin M. Aversive training methods in Xenopus laevis: general principles. Cold Spring Harb Protoc 2012;2012:pdb. [PMID: 22550289 DOI: 10.1101/pdb.top068338] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
98 Chen J, Huang C, Zheng L, Simonich M, Bai C, Tanguay R, Dong Q. Trimethyltin chloride (TMT) neurobehavioral toxicity in embryonic zebrafish. Neurotoxicol Teratol 2011;33:721-6. [PMID: 21964161 DOI: 10.1016/j.ntt.2011.09.003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
99 Martineau PR, Mourrain P. Tracking zebrafish larvae in group--status and perspectives. Methods 2013;62:292-303. [PMID: 23707495 DOI: 10.1016/j.ymeth.2013.05.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
100 Worsham M, Fernandes VFL, Settle A, Balaan C, Lactaoen K, Tuttle LJ, Iwashita M, Yoshizawa M. Behavioral Tracking and Neuromast Imaging of Mexican Cavefish. J Vis Exp 2019. [PMID: 31009008 DOI: 10.3791/59099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
101 Allada R, Siegel JM. Unearthing the phylogenetic roots of sleep. Curr Biol 2008;18:R670-9. [PMID: 18682212 DOI: 10.1016/j.cub.2008.06.033] [Cited by in Crossref: 158] [Cited by in F6Publishing: 125] [Article Influence: 11.3] [Reference Citation Analysis]
102 Lyons DG, Rihel J. Sleep Circuits and Physiology in Non-Mammalian Systems. Curr Opin Physiol 2020;15:245-55. [PMID: 34738047 DOI: 10.1016/j.cophys.2020.03.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Godden KE, Landry JP, Slepneva N, Migues PV, Pompeiano M. Early expression of hypocretin/orexin in the chick embryo brain. PLoS One 2014;9:e106977. [PMID: 25188307 DOI: 10.1371/journal.pone.0106977] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
104 Mosser EA, Chiu CN, Tamai TK, Hirota T, Li S, Hui M, Wang A, Singh C, Giovanni A, Kay SA, Prober DA. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 2019;9:12405. [PMID: 31455847 DOI: 10.1038/s41598-019-48914-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
105 Warren WC, Boggs TE, Borowsky R, Carlson BM, Ferrufino E, Gross JB, Hillier L, Hu Z, Keene AC, Kenzior A, Kowalko JE, Tomlinson C, Kremitzki M, Lemieux ME, Graves-Lindsay T, McGaugh SE, Miller JT, Mommersteeg MTM, Moran RL, Peuß R, Rice ES, Riddle MR, Sifuentes-Romero I, Stanhope BA, Tabin CJ, Thakur S, Yamamoto Y, Rohner N. A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nat Commun 2021;12:1447. [PMID: 33664263 DOI: 10.1038/s41467-021-21733-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
106 Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sciences 2022;12:134. [DOI: 10.3390/brainsci12020134] [Reference Citation Analysis]
107 Colwill RM, Creton R. Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes 2011;86:222-9. [PMID: 21147203 DOI: 10.1016/j.beproc.2010.12.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 95] [Article Influence: 9.0] [Reference Citation Analysis]
108 Haesemeyer M, Schier AF. The study of psychiatric disease genes and drugs in zebrafish. Curr Opin Neurobiol 2015;30:122-30. [PMID: 25523356 DOI: 10.1016/j.conb.2014.12.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
109 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
110 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
111 Cirelli C, Tononi G. Is sleep essential? PLoS Biol. 2008;6:e216. [PMID: 18752355 DOI: 10.1371/journal.pbio.0060216] [Cited by in Crossref: 344] [Cited by in F6Publishing: 288] [Article Influence: 24.6] [Reference Citation Analysis]
112 Liu Y, Ma P, Cassidy PA, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhong W, Zhang M, Leung YF. Statistical Analysis of Zebrafish Locomotor Behaviour by Generalized Linear Mixed Models. Sci Rep 2017;7:2937. [PMID: 28592855 DOI: 10.1038/s41598-017-02822-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
113 Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS Neurol Disord Drug Targets 2009;8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
114 Zimmerman JE, Naidoo N, Raizen DM, Pack AI. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 2008;31:371-6. [PMID: 18538867 DOI: 10.1016/j.tins.2008.05.001] [Cited by in Crossref: 100] [Cited by in F6Publishing: 95] [Article Influence: 7.1] [Reference Citation Analysis]
115 Ma M, Ramirez AD, Wang T, Roberts RL, Harmon KE, Schoppik D, Sharma A, Kuang C, Goei SL, Gagnon JA, Zimmerman S, Tsai SQ, Reyon D, Joung JK, Aksay ERF, Schier AF, Pan YA. Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2020;40:143-58. [PMID: 31685652 DOI: 10.1523/JNEUROSCI.1783-19.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Kokel D, Peterson RT. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 2008;7:483-90. [PMID: 18784194 DOI: 10.1093/bfgp/eln040] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 6.3] [Reference Citation Analysis]
117 Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 2015;4:e07000. [PMID: 26374985 DOI: 10.7554/eLife.07000] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 8.7] [Reference Citation Analysis]
118 Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA. Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 2017;15:4. [PMID: 28122559 DOI: 10.1186/s12915-016-0346-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
119 Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, Rosbash M. Circadian neuron feedback controls the Drosophila sleep--activity profile. Nature 2016;536:292-7. [PMID: 27479324 DOI: 10.1038/nature19097] [Cited by in Crossref: 157] [Cited by in F6Publishing: 135] [Article Influence: 26.2] [Reference Citation Analysis]
120 Alzugaray ME, Bruno MC, Villalobos Sambucaro MJ, Ronderos JR. The Evolutionary History of The Orexin/Allatotropin GPCR Family: from Placozoa and Cnidaria to Vertebrata. Sci Rep 2019;9:10217. [PMID: 31308431 DOI: 10.1038/s41598-019-46712-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
121 Karpenko S, Wolf S, Lafaye J, Le Goc G, Panier T, Bormuth V, Candelier R, Debrégeas G. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae. Elife 2020;9:e52882. [PMID: 31895038 DOI: 10.7554/eLife.52882] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
122 Kokel D, Peterson RT. Using the zebrafish photomotor response for psychotropic drug screening. Methods Cell Biol 2011;105:517-24. [PMID: 21951545 DOI: 10.1016/B978-0-12-381320-6.00022-9] [Cited by in Crossref: 60] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
123 Yin X, Wang H, Zhang Y, Dahlgren RA, Zhang H, Shi M, Gao M, Wang X. Toxicological assessment of trace β-diketone antibiotic mixtures on zebrafish (Danio rerio) by proteomic analysis. PLoS One 2014;9:e102731. [PMID: 25062015 DOI: 10.1371/journal.pone.0102731] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
124 Heap LA, Vanwalleghem GC, Thompson AW, Favre-Bulle I, Rubinsztein-Dunlop H, Scott EK. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish. Front Neuroanat 2017;11:135. [PMID: 29403362 DOI: 10.3389/fnana.2017.00135] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
125 Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB, O'Quin KE, Borowsky RL, Jeffery WR, Keene AC. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol 2015;13:15. [PMID: 25761998 DOI: 10.1186/s12915-015-0119-3] [Cited by in Crossref: 62] [Cited by in F6Publishing: 46] [Article Influence: 8.9] [Reference Citation Analysis]
126 Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 2016;12:e1006445. [PMID: 27870848 DOI: 10.1371/journal.pgen.1006445] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
127 Luchiari AC, Salajan DC, Gerlai R. Acute and chronic alcohol administration: effects on performance of zebrafish in a latent learning task. Behav Brain Res 2015;282:76-83. [PMID: 25557800 DOI: 10.1016/j.bbr.2014.12.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
128 Alié A, Devos L, Torres-Paz J, Prunier L, Boulet F, Blin M, Elipot Y, Retaux S. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. Elife 2018;7:e32808. [PMID: 29405116 DOI: 10.7554/eLife.32808] [Cited by in Crossref: 34] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
129 Kelu JJ, Pipalia TG, Hughes SM. Circadian regulation of muscle growth independent of locomotor activity. Proc Natl Acad Sci U S A 2020;117:31208-18. [PMID: 33229575 DOI: 10.1073/pnas.2012450117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Emran F, Rihel J, Adolph AR, Wong KY, Kraves S, Dowling JE. OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 2007;104:19126-31. [PMID: 18025459 DOI: 10.1073/pnas.0709337104] [Cited by in Crossref: 94] [Cited by in F6Publishing: 88] [Article Influence: 6.3] [Reference Citation Analysis]
131 Keene AC, Duboue ER. The origins and evolution of sleep. J Exp Biol 2018;221:jeb159533. [PMID: 29895581 DOI: 10.1242/jeb.159533] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
132 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
133 Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016;39:357-68. [PMID: 26446112 DOI: 10.5665/sleep.5444] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
134 Soya S, Sakurai T. Evolution of Orexin Neuropeptide System: Structure and Function. Front Neurosci 2020;14:691. [PMID: 32754010 DOI: 10.3389/fnins.2020.00691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
135 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
136 Ruzzo EK, Pérez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, Singh C, Xu J, Hoekstra JN, Leventhal O, Leppä VM, Gandal MJ, Paskov K, Stockham N, Polioudakis D, Lowe JK, Prober DA, Geschwind DH, Wall DP. Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks. Cell 2019;178:850-866.e26. [PMID: 31398340 DOI: 10.1016/j.cell.2019.07.015] [Cited by in Crossref: 117] [Cited by in F6Publishing: 88] [Article Influence: 58.5] [Reference Citation Analysis]
137 Emran F, Rihel J, Dowling JE. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp 2008:923. [PMID: 19078942 DOI: 10.3791/923] [Cited by in Crossref: 66] [Cited by in F6Publishing: 87] [Article Influence: 4.7] [Reference Citation Analysis]
138 Prober DA, Zimmerman S, Myers BR, McDermott BM Jr, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF. Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 2008;28:10102-10. [PMID: 18829968 DOI: 10.1523/JNEUROSCI.2740-08.2008] [Cited by in Crossref: 113] [Cited by in F6Publishing: 72] [Article Influence: 8.1] [Reference Citation Analysis]
139 Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides 2007;41:329-37. [PMID: 17590434 DOI: 10.1016/j.npep.2007.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
140 Emran F, Dowling JE. Larval zebrafish turn off their photoreceptors at night. Commun Integr Biol 2010;3:430-2. [PMID: 21057632 DOI: 10.4161/cib.3.5.12158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
141 Ghosh M, Rihel J. Hierarchical Compression Reveals Sub-Second to Day-Long Structure in Larval Zebrafish Behavior. eNeuro 2020;7:ENEURO. [PMID: 32241874 DOI: 10.1523/ENEURO.0408-19.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
142 Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles BJ, Montz CJ, Chakravarthy S, Zimmerman S, Salehi-Ashtiani K, Vidal M, Schier AF, Prober DA. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 2016;89:842-56. [PMID: 26889812 DOI: 10.1016/j.neuron.2016.01.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
143 Clark KJ, Boczek NJ, Ekker SC. Stressing zebrafish for behavioral genetics. Rev Neurosci 2011;22:49-62. [PMID: 21615261 DOI: 10.1515/RNS.2011.007] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 5.3] [Reference Citation Analysis]
144 Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021:S1097-2765(21)00933-3. [PMID: 34798058 DOI: 10.1016/j.molcel.2021.10.026] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
145 Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 2009;10:549-60. [PMID: 19617891 DOI: 10.1038/nrn2683] [Cited by in Crossref: 225] [Cited by in F6Publishing: 194] [Article Influence: 17.3] [Reference Citation Analysis]
146 Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F. Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 2012;192:1327-45. [PMID: 22982579 DOI: 10.1534/genetics.112.144667] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
147 Crocker A, Sehgal A. Genetic analysis of sleep. Genes Dev 2010;24:1220-35. [PMID: 20551171 DOI: 10.1101/gad.1913110] [Cited by in Crossref: 90] [Cited by in F6Publishing: 80] [Article Influence: 7.5] [Reference Citation Analysis]
148 Sutton EL. Profile of suvorexant in the management of insomnia. Drug Des Devel Ther 2015;9:6035-42. [PMID: 26648692 DOI: 10.2147/DDDT.S73224] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
149 Chen S, Reichert S, Singh C, Oikonomou G, Rihel J, Prober DA. Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron 2017;95:153-168.e6. [PMID: 28648499 DOI: 10.1016/j.neuron.2017.06.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
150 Hirayama J, Alifu Y, Hamabe R, Yamaguchi S, Tomita J, Maruyama Y, Asaoka Y, Nakahama KI, Tamaru T, Takamatsu K, Takamatsu N, Hattori A, Nishina S, Azuma N, Kawahara A, Kume K, Nishina H. The clock components Period2, Cryptochrome1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythms and/or total activity levels in zebrafish. Sci Rep 2019;9:196. [PMID: 30655599 DOI: 10.1038/s41598-018-37879-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
151 Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2018;14:20180101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
152 Friedrich RW, Genoud C, Wanner AA. Analyzing the structure and function of neuronal circuits in zebrafish. Front Neural Circuits 2013;7:71. [PMID: 23630467 DOI: 10.3389/fncir.2013.00071] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
153 Sakai C, Ijaz S, Hoffman EJ. Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future. Front Mol Neurosci 2018;11:294. [PMID: 30210288 DOI: 10.3389/fnmol.2018.00294] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 11.8] [Reference Citation Analysis]
154 Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014;5:153. [PMID: 25104936 DOI: 10.3389/fphar.2014.00153] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 6.1] [Reference Citation Analysis]
155 Choi S, Taylor KP, Chatzigeorgiou M, Hu Z, Schafer WR, Kaplan JM. Sensory Neurons Arouse C. elegans Locomotion via Both Glutamate and Neuropeptide Release. PLoS Genet 2015;11:e1005359. [PMID: 26154367 DOI: 10.1371/journal.pgen.1005359] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
156 Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019;20:e46807. [PMID: 30804011 DOI: 10.15252/embr.201846807] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
157 Lee DA, Liu J, Hong Y, Lane JM, Hill AJ, Hou SL, Wang H, Oikonomou G, Pham U, Engle J, Saxena R, Prober DA. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci Adv 2019;5:eaax4249. [PMID: 31763451 DOI: 10.1126/sciadv.aax4249] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
158 Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci 2012;32:12961-72. [PMID: 22973020 DOI: 10.1523/JNEUROSCI.1284-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
159 Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019;10:895. [PMID: 30837464 DOI: 10.1038/s41467-019-08806-w] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 15.7] [Reference Citation Analysis]
160 Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 2010;13:513-20. [PMID: 20305645 DOI: 10.1038/nn.2518] [Cited by in Crossref: 141] [Cited by in F6Publishing: 127] [Article Influence: 11.8] [Reference Citation Analysis]
161 Jung S. A Review of Image Analysis in Biochemical Engineering. Biotechnol Bioproc E 2019;24:65-75. [DOI: 10.1007/s12257-018-0372-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Brown EB, Klok J, Keene AC. Measuring metabolic rate in single flies during sleep and waking states via indirect calorimetry. J Neurosci Methods 2022;:109606. [PMID: 35483506 DOI: 10.1016/j.jneumeth.2022.109606] [Reference Citation Analysis]
163 Woods IG, Schoppik D, Shi VJ, Zimmerman S, Coleman HA, Greenwood J, Soucy ER, Schier AF. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J Neurosci 2014;34:3142-60. [PMID: 24573274 DOI: 10.1523/JNEUROSCI.3529-13.2014] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 7.8] [Reference Citation Analysis]
164 Zhao Y, Singh C, Prober DA, Wayne NL. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio). Endocrinology 2016;157:4012-20. [PMID: 27533887 DOI: 10.1210/en.2016-1381] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
165 Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, Hofbauer M, Fischer RM, von Haeseler A, Baier H, Tessmar-Raible K. TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biol 2021;19:e3001012. [PMID: 33411725 DOI: 10.1371/journal.pbio.3001012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]