BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 2007;27:14239-47. [PMID: 18160631 DOI: 10.1523/JNEUROSCI.3878-07.2007] [Cited by in Crossref: 186] [Cited by in F6Publishing: 78] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Blalock EM, Grondin R, Chen KC, Thibault O, Thibault V, Pandya JD, Dowling A, Zhang Z, Sullivan P, Porter NM, Landfield PW. Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys. J Neurosci 2010;30:6058-71. [PMID: 20427664 DOI: 10.1523/JNEUROSCI.3956-09.2010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
2 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
3 Porter JN, Minhas D, Lopresti BJ, Price JC, Bradberry CW. Altered cerebellar and prefrontal cortex function in rhesus monkeys that previously self-administered cocaine. Psychopharmacology (Berl) 2014;231:4211-8. [PMID: 24733237 DOI: 10.1007/s00213-014-3560-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
4 Sherman DL, Williams A, Gd S, Modi HR, Wang Q, Thakor NV, Geocadin RG. Intranasal Orexin After Cardiac Arrest Leads to Increased Electroencephalographic Gamma Activity and Enhanced Neurologic Recovery in Rats. Crit Care Explor 2021;3:e0349. [PMID: 33634267 DOI: 10.1097/CCE.0000000000000349] [Reference Citation Analysis]
5 Opris I, Fuqua JL, Huettl PF, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA. Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 2012;6:88. [PMID: 23189041 DOI: 10.3389/fncir.2012.00088] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
6 Gould RW, Porrino LJ, Nader MA. Nonhuman primate models of addiction and PET imaging: dopamine system dysregulation. Curr Top Behav Neurosci 2012;11:25-44. [PMID: 22020537 DOI: 10.1007/7854_2011_168] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
7 Wu MF, Nienhuis R, Maidment N, Lam HA, Siegel JM. Role of the hypocretin (orexin) receptor 2 (Hcrt-r2) in the regulation of hypocretin level and cataplexy. J Neurosci 2011;31:6305-10. [PMID: 21525270 DOI: 10.1523/JNEUROSCI.0365-11.2011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
8 Hampson RE, Gerhardt GA, Marmarelis V, Song D, Opris I, Santos L, Berger TW, Deadwyler SA. Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J Neural Eng 2012;9:056012. [PMID: 22976769 DOI: 10.1088/1741-2560/9/5/056012] [Cited by in Crossref: 77] [Cited by in F6Publishing: 51] [Article Influence: 7.7] [Reference Citation Analysis]
9 Flores Á, Julià-Hernández M, Maldonado R, Berrendero F. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol. Br J Pharmacol 2016;173:1381-92. [PMID: 26799708 DOI: 10.1111/bph.13440] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
10 Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci 2012;32:12305-11. [PMID: 22956821 DOI: 10.1523/JNEUROSCI.2630-12.2012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
11 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Dando M. Advances in neuroscience and the biological and toxin weapons convention. Biotechnol Res Int 2011;2011:973851. [PMID: 21350673 DOI: 10.4061/2011/973851] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
13 Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med 2022. [PMID: 35043499 DOI: 10.1111/joim.13406] [Reference Citation Analysis]
14 Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA. Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 2015;244:104-13. [PMID: 24954713 DOI: 10.1016/j.jneumeth.2014.05.029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
15 Reichert CF, Maire M, Gabel V, Viola AU, Götz T, Scheffler K, Klarhöfer M, Berthomier C, Strobel W, Phillips C, Salmon E, Cajochen C, Schmidt C. Cognitive brain responses during circadian wake-promotion: evidence for sleep-pressure-dependent hypothalamic activations. Sci Rep 2017;7:5620. [PMID: 28717201 DOI: 10.1038/s41598-017-05695-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Hampson RE, España RA, Rogers GA, Porrino LJ, Deadwyler SA. Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology (Berl) 2009;202:355-69. [PMID: 18985324 DOI: 10.1007/s00213-008-1360-z] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
17 Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020;12:E1120. [PMID: 33233734 DOI: 10.3390/pharmaceutics12111120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wozniak DR, Quinnell TG. Unmet needs of patients with narcolepsy: perspectives on emerging treatment options. Nat Sci Sleep 2015;7:51-61. [PMID: 26045680 DOI: 10.2147/NSS.S56077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
19 Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Wong C, Ma J, Pradhan K, Tomasi D, Thanos PK, Ferré S, Jayne M. Sleep deprivation decreases binding of [11C]raclopride to dopamine D2/D3 receptors in the human brain. J Neurosci 2008;28:8454-61. [PMID: 18716203 DOI: 10.1523/JNEUROSCI.1443-08.2008] [Cited by in Crossref: 114] [Cited by in F6Publishing: 67] [Article Influence: 8.1] [Reference Citation Analysis]
20 Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 2012;29:1908-21. [PMID: 22607167 DOI: 10.1089/neu.2012.2404] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
21 Hagen J, Lyon W, Chushak Y, Tomczak M, Naik R, Stone M, Kelley-Loughnane N. Detection of orexin A neuropeptide in biological fluids using a zinc oxide field effect transistor. ACS Chem Neurosci 2013;4:444-53. [PMID: 23509980 DOI: 10.1021/cn300159e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
22 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
23 Barateau L, Dauvilliers Y. Recent advances in treatment for narcolepsy. Ther Adv Neurol Disord 2019;12:1756286419875622. [PMID: 31632459 DOI: 10.1177/1756286419875622] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
24 Marvin RK, Saepoo MB, Ye S, White DB, Liu R, Hensley K, Rega P, Kazan V, Giovannucci DR, Isailovic D. Salivary protein changes in response to acute stress in medical residents performing advanced clinical simulations: a pilot proteomics study. Biomarkers 2017;22:372-82. [PMID: 28055279 DOI: 10.1080/1354750X.2017.1279215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
25 Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021;11:1634. [PMID: 34942932 DOI: 10.3390/brainsci11121634] [Reference Citation Analysis]
26 Lammers GJ. Intranasal hypocretin-1: making sense of scents? Sleep Med 2011;12:939-40. [PMID: 22136855 DOI: 10.1016/j.sleep.2011.11.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
27 Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA. Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 2015;9:317. [PMID: 26500473 DOI: 10.3389/fnins.2015.00317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
28 Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019;10:709. [PMID: 31695678 DOI: 10.3389/fendo.2019.00709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
29 McGregor R, Wu MF, Barber G, Ramanathan L, Siegel JM. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J Neurosci 2011;31:15455-67. [PMID: 22031892 DOI: 10.1523/JNEUROSCI.4017-11.2011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
30 Maruyama T, Matsumura M, Sakai N, Nishino S. The pathogenesis of narcolepsy, current treatments and prospective therapeutic targets. Expert Opinion on Orphan Drugs 2015;4:63-82. [DOI: 10.1517/21678707.2016.1117973] [Reference Citation Analysis]
31 Fadel JR, Jolivalt CG, Reagan LP. Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 2013;12:764-76. [PMID: 23416469 DOI: 10.1016/j.arr.2013.01.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
32 Opris I, Gerhardt GA, Hampson RE, Deadwyler SA. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 2015;9:79. [PMID: 26074787 DOI: 10.3389/fnsys.2015.00079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.1] [Reference Citation Analysis]
33 Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, Xie J, Sakurai T, Xie XS. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci 2013;33:5275-84. [PMID: 23516292 DOI: 10.1523/JNEUROSCI.3200-12.2013] [Cited by in Crossref: 77] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
34 Gould RW, Gage HD, Nader MA. Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in Rhesus monkeys. Biol Psychiatry 2012;72:856-63. [PMID: 22672928 DOI: 10.1016/j.biopsych.2012.05.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
35 Hampson RE, Opris I, Deadwyler SA. Neural correlates of fast pupil dilation in nonhuman primates: relation to behavioral performance and cognitive workload. Behav Brain Res 2010;212:1-11. [PMID: 20226215 DOI: 10.1016/j.bbr.2010.03.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
36 Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schiöth HB, Benedict C. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res 2013;30:2475-84. [PMID: 23135822 DOI: 10.1007/s11095-012-0915-1] [Cited by in Crossref: 164] [Cited by in F6Publishing: 149] [Article Influence: 16.4] [Reference Citation Analysis]
37 Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021. [PMID: 33491126 DOI: 10.1007/s13346-020-00891-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
38 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
39 Stenslik MJ, Evans A, Pomerleau F, Weeks R, Huettl P, Foreman E, Turchan-Cholewo J, Andersen A, Cass WA, Zhang Z, Grondin RC, Gash DM, Gerhardt GA, Bradley LH. Methodology and effects of repeated intranasal delivery of DNSP-11 in awake Rhesus macaques. J Neurosci Methods 2018;303:30-40. [PMID: 29614295 DOI: 10.1016/j.jneumeth.2018.03.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
40 Cattepoel S, Hanenberg M, Kulic L, Nitsch RM. Chronic intranasal treatment with an anti-Aβ(30-42) scFv antibody ameliorates amyloid pathology in a transgenic mouse model of Alzheimer's disease. PLoS One 2011;6:e18296. [PMID: 21483675 DOI: 10.1371/journal.pone.0018296] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 4.5] [Reference Citation Analysis]
41 Arendt DH, Hassell J, Li H, Achua JK, Guarnieri DJ, Dileone RJ, Ronan PJ, Summers CH. Anxiolytic function of the orexin 2/hypocretin A receptor in the basolateral amygdala. Psychoneuroendocrinology 2014;40:17-26. [PMID: 24485472 DOI: 10.1016/j.psyneuen.2013.10.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
42 Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2019;11:362. [PMID: 32038222 DOI: 10.3389/fnagi.2019.00362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol 2018;51:132-45. [PMID: 29932958 DOI: 10.1016/j.yfrne.2018.06.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
44 Hampson RE, Porrino LJ, Opris I, Stanford T, Deadwyler SA. Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology (Berl) 2011;213:105-18. [PMID: 20865250 DOI: 10.1007/s00213-010-2017-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
45 Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018;12:835. [PMID: 30524223 DOI: 10.3389/fnins.2018.00835] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
47 Barateau L, Lopez R, Dauvilliers Y. Treatment Options for Narcolepsy. CNS Drugs 2016;30:369-79. [PMID: 27155860 DOI: 10.1007/s40263-016-0337-4] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 11.6] [Reference Citation Analysis]
48 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
49 Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA. Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 2012;24:2334-47. [PMID: 23016850 DOI: 10.1162/jocn_a_00307] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
50 Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015;20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
51 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
52 Deadwyler SA, Hampson RE, Song D, Opris I, Gerhardt GA, Marmarelis VZ, Berger TW. A cognitive prosthesis for memory facilitation by closed-loop functional ensemble stimulation of hippocampal neurons in primate brain. Exp Neurol 2017;287:452-60. [PMID: 27233622 DOI: 10.1016/j.expneurol.2016.05.031] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
53 Thannickal TC, Nienhuis R, Siegel JM. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 2009;32:993-8. [PMID: 19725250 DOI: 10.1093/sleep/32.8.993] [Cited by in Crossref: 154] [Cited by in F6Publishing: 123] [Article Influence: 11.8] [Reference Citation Analysis]
54 Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018;12:835. [PMID: 30524223 DOI: 10.3389/fnins.2018.00835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
55 Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021;234:113370. [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem 2017;146:21-30. [PMID: 29107703 DOI: 10.1016/j.nlm.2017.10.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
57 Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014;8:211. [PMID: 25408639 DOI: 10.3389/fnsys.2014.00211] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
58 Elliott JE, De Luche SE, Churchill MJ, Moore C, Cohen AS, Meshul CK, Lim MM. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 2018;41. [PMID: 29315422 DOI: 10.1093/sleep/zsx212] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
59 Stanley EM, Fadel JR. Aging-related alterations in orexin/hypocretin modulation of septo-hippocampal amino acid neurotransmission. Neuroscience 2011;195:70-9. [PMID: 21884758 DOI: 10.1016/j.neuroscience.2011.08.033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
60 Stanojlovic M, Pallais Yllescas JP Jr, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019;316:R571-83. [PMID: 30726119 DOI: 10.1152/ajpregu.00383.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
61 Liu M, Blanco-Centurion C, Konadhode R, Begum S, Pelluru D, Gerashchenko D, Sakurai T, Yanagisawa M, van den Pol AN, Shiromani PJ. Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 2011;31:6028-40. [PMID: 21508228 DOI: 10.1523/JNEUROSCI.6069-10.2011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
62 D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019;10:509. [PMID: 31396113 DOI: 10.3389/fpsyt.2019.00509] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
63 Song J, Kim E, Kim CH, Song HT, Lee JE. The role of orexin in post-stroke inflammation, cognitive decline, and depression. Mol Brain 2015;8:16. [PMID: 25884812 DOI: 10.1186/s13041-015-0106-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
64 Tennison MN, Moreno JD. Neuroscience, ethics, and national security: the state of the art. PLoS Biol 2012;10:e1001289. [PMID: 22448146 DOI: 10.1371/journal.pbio.1001289] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
65 Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Reference Citation Analysis]
66 Boschen KE, Fadel JR, Burk JA. Systemic and intrabasalis administration of the orexin-1 receptor antagonist, SB-334867, disrupts attentional performance in rats. Psychopharmacology (Berl) 2009;206:205-13. [PMID: 19575184 DOI: 10.1007/s00213-009-1596-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 3.0] [Reference Citation Analysis]
67 Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, de Lecea L. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci U S A 2011;108:13305-10. [PMID: 21788501 DOI: 10.1073/pnas.1015633108] [Cited by in Crossref: 124] [Cited by in F6Publishing: 116] [Article Influence: 11.3] [Reference Citation Analysis]
68 Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA, Marmarelis VZ, Berger TW, Deadwyler SA. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 2013;10:066013. [PMID: 24216292 DOI: 10.1088/1741-2560/10/6/066013] [Cited by in Crossref: 52] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
69 Zajo KN, Fadel JR, Burk JA. Orexin A-induced enhancement of attentional processing in rats: role of basal forebrain neurons. Psychopharmacology (Berl) 2016;233:639-47. [PMID: 26534765 DOI: 10.1007/s00213-015-4139-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
70 Fernandes RM, Correa MG, Dos Santos MAR, Almeida APCPSC, Fagundes NCF, Maia LC, Lima RR. The Effects of Moderate Physical Exercise on Adult Cognition: A Systematic Review. Front Physiol 2018;9:667. [PMID: 29937732 DOI: 10.3389/fphys.2018.00667] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
71 Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2017;152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
72 Porrino LJ, Hampson RE, Opris I, Deadwyler SA. Acute cocaine induced deficits in cognitive performance in rhesus macaque monkeys treated with baclofen. Psychopharmacology (Berl) 2013;225:105-14. [PMID: 22836369 DOI: 10.1007/s00213-012-2798-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
73 Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biol Psychiatry 2017;81:683-92. [PMID: 27955897 DOI: 10.1016/j.biopsych.2016.10.013] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
74 Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017;350:124-32. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
75 Parekh B. Mechanisms of the blunting of the sympatho-adrenal response: a theory. Curr Diabetes Rev 2009;5:79-91. [PMID: 19442093 DOI: 10.2174/157339909788166846] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
76 Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018;145:232-44. [PMID: 29250792 DOI: 10.1111/jnc.14279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
77 Hirota K. Sepsis and the orexin system. J Anesth 2016;30:919-22. [PMID: 27580992 DOI: 10.1007/s00540-016-2246-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
78 Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm 2010;7:884-93. [PMID: 20420446 DOI: 10.1021/mp100029t] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 7.1] [Reference Citation Analysis]
79 Stanley EM, Fadel J. Aging-related deficits in orexin/hypocretin modulation of the septohippocampal cholinergic system. Synapse. 2012;66:445-452. [PMID: 22213437 DOI: 10.1002/syn.21533] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
80 Loomis S, McCarthy A, Baxter C, Kellett DO, Edgar DM, Tricklebank M, Gilmour G. Distinct pro-vigilant profile induced in rats by the mGluR5 potentiator LSN2814617. Psychopharmacology (Berl) 2015;232:3977-89. [PMID: 25902875 DOI: 10.1007/s00213-015-3936-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
81 Lyamin OI, Korneva SM, Obukhova ED, Mukhametov LM, Siegel JM. Evaluation of the ability of northern fur seals to perceive and visually discriminate images under the conditions of sleep loss. Dokl Biol Sci 2015;463:211-4. [PMID: 26335972 DOI: 10.1134/S0012496615040080] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
82 Foltin RW, Evans SM. Hypocretin/orexin antagonists decrease cocaine self-administration by female rhesus monkeys. Drug Alcohol Depend 2018;188:318-27. [PMID: 29852449 DOI: 10.1016/j.drugalcdep.2018.04.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
83 Clark IA, Vissel B. Inflammation-sleep interface in brain disease: TNF, insulin, orexin. J Neuroinflammation. 2014;11:51. [PMID: 24655719 DOI: 10.1186/1742-2094-11-51] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
84 Li M, Cui J, Xu B, Wei Y, Fu C, Lv X, Xiong L, Qin D. Sleep Disturbances and Depression Are Co-morbid Conditions: Insights From Animal Models, Especially Non-human Primate Model. Front Psychiatry 2022;12:827541. [DOI: 10.3389/fpsyt.2021.827541] [Reference Citation Analysis]
85 Duffy CM, Hofmeister JJ, Nixon JP, Butterick TA. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol Learn Mem 2019;157:41-7. [PMID: 30471346 DOI: 10.1016/j.nlm.2018.11.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]