BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 2004;24:11439-48. [PMID: 15601950 DOI: 10.1523/JNEUROSCI.3459-04.2004] [Cited by in Crossref: 288] [Cited by in F6Publishing: 148] [Article Influence: 16.9] [Reference Citation Analysis]
Number Citing Articles
1 Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 2012;109:E2635-44. [PMID: 22955882 DOI: 10.1073/pnas.1202526109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
2 Heydendael W, Sengupta A, Bhatnagar S. Putative genes mediating the effects of orexins in the posterior paraventricular thalamus on neuroendocrine and behavioral adaptations to repeated stress. Brain Res Bull 2012;89:203-10. [PMID: 22982687 DOI: 10.1016/j.brainresbull.2012.09.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
3 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
4 Gołyszny M, Zieliński M, Paul-samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.02.005] [Reference Citation Analysis]
5 Leinninger GM. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol Behav 2011;104:572-81. [PMID: 21550356 DOI: 10.1016/j.physbeh.2011.04.060] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
6 Gao XB, Wang AH. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold. Acta Physiol (Oxf) 2010;198:251-62. [PMID: 19785627 DOI: 10.1111/j.1748-1716.2009.02047.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
7 Grafe LA, Geng E, Corbett B, Urban K, Bhatnagar S. Sex- and Stress-Dependent Effects on Dendritic Morphology and Spine Densities in Putative Orexin Neurons. Neuroscience 2019;418:266-78. [PMID: 31442567 DOI: 10.1016/j.neuroscience.2019.08.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
8 Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. Prog Brain Res 2016;224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
9 Lu J, Zhao J, Balesar R, Fronczek R, Zhu QB, Wu XY, Hu SH, Bao AM, Swaab DF. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression. EBioMedicine 2017;18:311-9. [PMID: 28377228 DOI: 10.1016/j.ebiom.2017.03.043] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
10 Malherbe P, Borroni E, Gobbi L, Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M, Wettstein JG, Moreau JL. Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX(2) receptor. Br J Pharmacol 2009;156:1326-41. [PMID: 19751316 DOI: 10.1111/j.1476-5381.2009.00127.x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 5.2] [Reference Citation Analysis]
11 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
12 Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A 2013;110:20260-5. [PMID: 24277819 DOI: 10.1073/pnas.1320325110] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 12.2] [Reference Citation Analysis]
13 Hassani OK, Krause MR, Mainville L, Cordova CA, Jones BE. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016;36:1747-57. [PMID: 26843654 DOI: 10.1523/JNEUROSCI.3903-15.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
14 Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009;29:10939-49. [PMID: 19726652 DOI: 10.1523/JNEUROSCI.1205-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 89] [Article Influence: 11.9] [Reference Citation Analysis]
15 Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. Medicine in Drug Discovery 2020;8:100059. [DOI: 10.1016/j.medidd.2020.100059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
17 Banihashemi L, Rinaman L. Noradrenergic inputs to the bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus underlie hypothalamic-pituitary-adrenal axis but not hypophagic or conditioned avoidance responses to systemic yohimbine. J Neurosci 2006;26:11442-53. [PMID: 17079674 DOI: 10.1523/JNEUROSCI.3561-06.2006] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 2.9] [Reference Citation Analysis]
18 Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 2010;1314:103-11. [PMID: 19948148 DOI: 10.1016/j.brainres.2009.11.054] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 6.5] [Reference Citation Analysis]
19 Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020;17:88. [PMID: 33088334 DOI: 10.1186/s12986-020-00513-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE. Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology (Berl) 2008;199:109-17. [PMID: 18470506 DOI: 10.1007/s00213-008-1136-5] [Cited by in Crossref: 166] [Cited by in F6Publishing: 178] [Article Influence: 11.9] [Reference Citation Analysis]
21 Low LA, Fitzgerald M. Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS One 2012;7:e34316. [PMID: 22470556 DOI: 10.1371/journal.pone.0034316] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
22 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
23 Grafe LA, Eacret D, Dobkin J, Bhatnagar S. Reduced Orexin System Function Contributes to Resilience to Repeated Social Stress. eNeuro 2018;5:ENEURO. [PMID: 29662948 DOI: 10.1523/ENEURO.0273-17.2018] [Cited by in Crossref: 33] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
24 Schöne C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 2014;7:697-704. [PMID: 24767990 DOI: 10.1016/j.celrep.2014.03.055] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 12.9] [Reference Citation Analysis]
25 Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Role of CRF1 and CRF2 receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: Evaluation of acute and chronic exposure. Neuropharmacology 2022;:109061. [PMID: 35452627 DOI: 10.1016/j.neuropharm.2022.109061] [Reference Citation Analysis]
26 Grafe LA, Bhatnagar S. The contribution of orexins to sex differences in the stress response. Brain Res 2020;1731:145893. [PMID: 30081036 DOI: 10.1016/j.brainres.2018.07.026] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
27 Liu RJ, Aghajanian GK. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 2008;105:359-64. [PMID: 18172209 DOI: 10.1073/pnas.0706679105] [Cited by in Crossref: 197] [Cited by in F6Publishing: 211] [Article Influence: 14.1] [Reference Citation Analysis]
28 Grafe LA, Eacret D, Luz S, Gotter AL, Renger JJ, Winrow CJ, Bhatnagar S. Orexin 2 receptor regulation of the hypothalamic-pituitary-adrenal (HPA) response to acute and repeated stress. Neuroscience 2017;348:313-23. [PMID: 28257896 DOI: 10.1016/j.neuroscience.2017.02.038] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
29 Winsky-Sommerer R, Boutrel B, de Lecea L. Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 2005;32:285-94. [PMID: 16385142 DOI: 10.1385/MN:32:3:285] [Cited by in Crossref: 91] [Cited by in F6Publishing: 52] [Article Influence: 5.7] [Reference Citation Analysis]
30 Gerashchenko D, Horvath TL, Xie XS. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology 2011;60:543-9. [PMID: 21195099 DOI: 10.1016/j.neuropharm.2010.12.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
31 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
32 Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest 2008;118:2471-81. [PMID: 18551194 DOI: 10.1172/JCI35115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 29] [Article Influence: 0.6] [Reference Citation Analysis]
33 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016;7:11395. [PMID: 27102565 DOI: 10.1038/ncomms11395] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 14.5] [Reference Citation Analysis]
34 Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2009;29:15575-85. [PMID: 20007481 DOI: 10.1523/JNEUROSCI.3138-09.2009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
35 Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2007;117:4022-33. [PMID: 18060037 DOI: 10.1172/JCI32829] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
36 Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res 2012;198:133-61. [PMID: 22813973 DOI: 10.1016/B978-0-444-59489-1.00009-4] [Cited by in Crossref: 125] [Cited by in F6Publishing: 69] [Article Influence: 12.5] [Reference Citation Analysis]
37 Kodani S, Soya S, Sakurai T. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice. J Neurosci 2017;37:7164-76. [PMID: 28642284 DOI: 10.1523/JNEUROSCI.0245-17.2017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 5.2] [Reference Citation Analysis]
38 Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018;159:3631-42. [PMID: 30215694 DOI: 10.1210/en.2018-00449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
39 Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 2008;213:43-61. [PMID: 18651175 DOI: 10.1007/s00429-008-0191-3] [Cited by in Crossref: 152] [Cited by in F6Publishing: 150] [Article Influence: 10.9] [Reference Citation Analysis]
40 Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE, Grigoriadis D, Williams JP, Karlsson C, Pitcairn C, Heilig M, Koob GF, Vendruscolo LF. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology 2015;40:1123-9. [PMID: 25367502 DOI: 10.1038/npp.2014.293] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
41 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
42 Berthoud HR, Münzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104:29-39. [PMID: 21549732 DOI: 10.1016/j.physbeh.2011.04.051] [Cited by in Crossref: 136] [Cited by in F6Publishing: 131] [Article Influence: 12.4] [Reference Citation Analysis]
43 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
44 Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res 2020;1731:146085. [PMID: 30590027 DOI: 10.1016/j.brainres.2018.12.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
45 Kuperman Y, Weiss M, Dine J, Staikin K, Golani O, Ramot A, Nahum T, Kühne C, Shemesh Y, Wurst W, Harmelin A, Deussing JM, Eder M, Chen A. CRFR1 in AgRP Neurons Modulates Sympathetic Nervous System Activity to Adapt to Cold Stress and Fasting. Cell Metab 2016;23:1185-99. [PMID: 27211900 DOI: 10.1016/j.cmet.2016.04.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
46 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011;97:700-7. [PMID: 20816891 DOI: 10.1016/j.pbb.2010.08.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
47 Almeneessier AS, Alzoghaibi M, BaHammam AA, Ibrahim MG, Olaish AH, Nashwan SZ, BaHammam AS. The effects of diurnal intermittent fasting on the wake-promoting neurotransmitter orexin-A. Ann Thorac Med 2018;13:48-54. [PMID: 29387256 DOI: 10.4103/atm.ATM_181_17] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
48 Morairty SR, Revel FG, Malherbe P, Moreau JL, Valladao D, Wettstein JG, Kilduff TS, Borroni E. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One 2012;7:e39131. [PMID: 22768296 DOI: 10.1371/journal.pone.0039131] [Cited by in Crossref: 79] [Cited by in F6Publishing: 89] [Article Influence: 7.9] [Reference Citation Analysis]
49 Equihua AC, De La Herrán-Arita AK, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 2013;4:163. [PMID: 24416019 DOI: 10.3389/fphar.2013.00163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
50 McGregor R, Wu MF, Barber G, Ramanathan L, Siegel JM. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J Neurosci 2011;31:15455-67. [PMID: 22031892 DOI: 10.1523/JNEUROSCI.4017-11.2011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
51 Rusyniak DE, Zaretsky DV, Zaretskaia MV, Durant PJ, DiMicco JA. The orexin-1 receptor antagonist SB-334867 decreases sympathetic responses to a moderate dose of methamphetamine and stress. Physiol Behav 2012;107:743-50. [PMID: 22361264 DOI: 10.1016/j.physbeh.2012.02.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
52 Ibi M, Matsuno K, Matsumoto M, Sasaki M, Nakagawa T, Katsuyama M, Iwata K, Zhang J, Kaneko S, Yabe-Nishimura C. Involvement of NOX1/NADPH oxidase in morphine-induced analgesia and tolerance. J Neurosci 2011;31:18094-103. [PMID: 22159121 DOI: 10.1523/JNEUROSCI.4136-11.2011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
53 Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev. 2014;46 Pt 3:379-396. [PMID: 24661986 DOI: 10.1016/j.neubiorev.2014.03.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
54 Cohen S, Matar MA, Vainer E, Zohar J, Kaplan Z, Cohen H. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl Psychiatry 2020;10:10. [PMID: 32066707 DOI: 10.1038/s41398-020-0698-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
55 Chen J, Kawamura T, Sethi MK, Zaia J, Repunte-Canonigo V, Sanna PP. Heparan sulfate: Resilience factor and therapeutic target for cocaine abuse. Sci Rep 2017;7:13931. [PMID: 29066725 DOI: 10.1038/s41598-017-13960-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
56 Knöchel C, Frickmann H, Nürnberger F. Effects of Sleep Deprivation by Olfactorily Induced Sexual Arousal Compared to Immobilization Stress and Manual Sleep Deprivation on Neuromessengers and Time Keeping Genes in the Suprachiasmatic Nuclei and Other Cerebral Entities of Syrian Hamsters-An Immunohistochemical Study. Int J Environ Res Public Health 2021;18:9169. [PMID: 34501759 DOI: 10.3390/ijerph18179169] [Reference Citation Analysis]
57 Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A 2007;104:10685-90. [PMID: 17563364 DOI: 10.1073/pnas.0702676104] [Cited by in Crossref: 213] [Cited by in F6Publishing: 207] [Article Influence: 14.2] [Reference Citation Analysis]
58 Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 2012;6:75. [PMID: 23162448 DOI: 10.3389/fnbeh.2012.00075] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 5.3] [Reference Citation Analysis]
59 Koob GF. A role for brain stress systems in addiction. Neuron 2008;59:11-34. [PMID: 18614026 DOI: 10.1016/j.neuron.2008.06.012] [Cited by in Crossref: 627] [Cited by in F6Publishing: 592] [Article Influence: 44.8] [Reference Citation Analysis]
60 Flores Á, Valls-Comamala V, Costa G, Saravia R, Maldonado R, Berrendero F. The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 2014;39:2732-41. [PMID: 24930888 DOI: 10.1038/npp.2014.146] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 9.6] [Reference Citation Analysis]
61 Kim WS, Kwak IS. EDCs trigger immune-neurotransmitter related gene expression, and cause histological damage in sensitive mud crab Macrophthalmus japonicus gills and hepatopancreas. Fish Shellfish Immunol 2022:S1050-4648(22)00076-6. [PMID: 35150829 DOI: 10.1016/j.fsi.2022.02.014] [Reference Citation Analysis]
62 Hsu CW, Wang S. Changes in the Orexin System in Rats Exhibiting Learned Helplessness Behaviors. Brain Sci 2021;11:1634. [PMID: 34942932 DOI: 10.3390/brainsci11121634] [Reference Citation Analysis]
63 Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS, Yagami K, Takahashi S, Goto K, Sakurai T. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci 2005;25:7459-69. [PMID: 16093397 DOI: 10.1523/JNEUROSCI.1193-05.2005] [Cited by in Crossref: 92] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
64 Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, Xie J, Sakurai T, Xie XS. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci 2013;33:5275-84. [PMID: 23516292 DOI: 10.1523/JNEUROSCI.3200-12.2013] [Cited by in Crossref: 77] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
65 Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci 2012;1264:72-86. [PMID: 22803681 DOI: 10.1111/j.1749-6632.2012.06585.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
66 Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021;15:627633. [PMID: 33732118 DOI: 10.3389/fnbeh.2021.627633] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
67 Almeneessier AS, BaHammam AS. How does diurnal intermittent fasting impact sleep, daytime sleepiness, and markers of the biological clock? Current insights. Nat Sci Sleep 2018;10:439-52. [PMID: 30573998 DOI: 10.2147/NSS.S165637] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
68 Giardino WJ, Eban-Rothschild A, Christoffel DJ, Li SB, Malenka RC, de Lecea L. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat Neurosci 2018;21:1084-95. [PMID: 30038273 DOI: 10.1038/s41593-018-0198-x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
69 Feng P, Vurbic D, Wu Z, Hu Y, Strohl KP. Changes in brain orexin levels in a rat model of depression induced by neonatal administration of clomipramine. J Psychopharmacol 2008;22:784-91. [PMID: 18753273 DOI: 10.1177/0269881106082899] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
70 Tenorio-Lopes L, Fournier S, Henry MS, Bretzner F, Kinkead R. Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO2 inhalation in a female rat model of panic disorder. Transl Psychiatry 2020;10:394. [PMID: 33173029 DOI: 10.1038/s41398-020-01076-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
71 Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 2009;29:3705-14. [PMID: 19321767 DOI: 10.1523/JNEUROSCI.0431-09.2009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
72 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
73 Zhang XH, Ma ZG, Rowlands DK, Gou YL, Fok KL, Wong HY, Yu MK, Tsang LL, Mu L, Chen L, Yung WH, Chung YW, Zhang BL, Zhao H, Chan HC. Flavonoid Myricetin Modulates GABA(A) Receptor Activity through Activation of Ca(2+) Channels and CaMK-II Pathway. Evid Based Complement Alternat Med 2012;2012:758097. [PMID: 23258999 DOI: 10.1155/2012/758097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
74 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
75 Li SB, Jones JR, de Lecea L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 2016;18:7. [PMID: 26733323 DOI: 10.1007/s11920-015-0639-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
76 So M, Hashimoto H, Saito R, Yamamoto Y, Motojima Y, Ueno H, Sonoda S, Yoshimura M, Maruyama T, Kusuhara K, Ueta Y. Inhibition of ghrelin-induced feeding in rats by pretreatment with a novel dual orexin receptor antagonist. J Physiol Sci 2018;68:129-36. [PMID: 28054308 DOI: 10.1007/s12576-016-0517-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
77 Tkacs NC, Pan Y, Sawhney G, Mann GL, Morrison AR. Hypoglycemia activates arousal-related neurons and increases wake time in adult rats. Physiol Behav 2007;91:240-9. [PMID: 17434543 DOI: 10.1016/j.physbeh.2007.03.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
78 Treweek JB, Jaferi A, Colago EE, Zhou P, Pickel VM. Electron microscopic localization of corticotropin-releasing factor (CRF) and CRF receptor in rat and mouse central nucleus of the amygdala. J Comp Neurol 2009;512:323-35. [PMID: 19003957 DOI: 10.1002/cne.21884] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
79 Lok R, Smolders KCHJ, Beersma DGM, de Kort YAW. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J Biol Rhythms 2018;33:589-601. [PMID: 30191746 DOI: 10.1177/0748730418796443] [Cited by in Crossref: 43] [Cited by in F6Publishing: 16] [Article Influence: 10.8] [Reference Citation Analysis]
80 Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010;1314:15-28. [PMID: 19631614 DOI: 10.1016/j.brainres.2009.07.028] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 7.5] [Reference Citation Analysis]
81 Adamantidis A, de Lecea L. The hypocretins as sensors for metabolism and arousal. J Physiol 2009;587:33-40. [PMID: 19047201 DOI: 10.1113/jphysiol.2008.164400] [Cited by in Crossref: 76] [Cited by in F6Publishing: 70] [Article Influence: 5.4] [Reference Citation Analysis]
82 Carter ME, Schaich Borg J, de Lecea L. The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 2009;9:39-45. [PMID: 19185540 DOI: 10.1016/j.coph.2008.12.018] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 4.9] [Reference Citation Analysis]
83 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
84 Smith LL. The Central Role of Hypothermia and Hyperactivity in Anorexia Nervosa: A Hypothesis. Front Behav Neurosci 2021;15:700645. [PMID: 34421554 DOI: 10.3389/fnbeh.2021.700645] [Reference Citation Analysis]
85 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
86 Saito YC, Maejima T, Nishitani M, Hasegawa E, Yanagawa Y, Mieda M, Sakurai T. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J Neurosci 2018;38:6366-78. [PMID: 29915137 DOI: 10.1523/JNEUROSCI.2835-17.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
87 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
88 Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 2009;29:11215-25. [PMID: 19741128 DOI: 10.1523/JNEUROSCI.6096-08.2009] [Cited by in Crossref: 245] [Cited by in F6Publishing: 162] [Article Influence: 18.8] [Reference Citation Analysis]
89 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
90 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
91 Cohen S, Ifergane G, Vainer E, Matar MA, Kaplan Z, Zohar J, Mathé AA, Cohen H. The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD. Transl Psychiatry 2016;6:e917. [PMID: 27727245 DOI: 10.1038/tp.2016.172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
92 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
93 Cano G, Mochizuki T, Saper CB. Neural circuitry of stress-induced insomnia in rats. J Neurosci 2008;28:10167-84. [PMID: 18829974 DOI: 10.1523/JNEUROSCI.1809-08.2008] [Cited by in Crossref: 143] [Cited by in F6Publishing: 61] [Article Influence: 10.2] [Reference Citation Analysis]
94 Grafe LA, Bhatnagar S. Orexins and stress. Front Neuroendocrinol 2018;51:132-45. [PMID: 29932958 DOI: 10.1016/j.yfrne.2018.06.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
95 Patriarca M, Postnova S, Braun HA, Hernández-García E, Toral R. Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle. PLoS Comput Biol 2012;8:e1002650. [PMID: 22927806 DOI: 10.1371/journal.pcbi.1002650] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
96 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
97 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
98 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
99 Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun 2016;7:12199. [PMID: 27448020 DOI: 10.1038/ncomms12199] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
100 Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S. Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 2012;37:2210-21. [PMID: 22713907 DOI: 10.1038/npp.2012.70] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
101 Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol 2006;494:845-61. [PMID: 16374809 DOI: 10.1002/cne.20859] [Cited by in Crossref: 383] [Cited by in F6Publishing: 396] [Article Influence: 23.9] [Reference Citation Analysis]
102 DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice. Front Aging Neurosci 2017;9:219. [PMID: 28769782 DOI: 10.3389/fnagi.2017.00219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
103 Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021;133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Reference Citation Analysis]
104 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
105 Schiappa C, Scarpelli S, D'Atri A, Gorgoni M, De Gennaro L. Narcolepsy and emotional experience: a review of the literature. Behav Brain Funct 2018;14:19. [PMID: 30587203 DOI: 10.1186/s12993-018-0151-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
106 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
107 Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018;9:720. [PMID: 30210441 DOI: 10.3389/fneur.2018.00720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
108 Dhaher R, Hauser SR, Getachew B, Bell RL, McBride WJ, McKinzie DL, Rodd ZA. The Orexin-1 Receptor Antagonist SB-334867 Reduces Alcohol Relapse Drinking, but not Alcohol-Seeking, in Alcohol-Preferring (P) Rats. J Addict Med 2010;4:153-9. [PMID: 20871792 DOI: 10.1097/ADM.0b013e3181bd893f] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
109 Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018;16:371-87. [PMID: 28730966 DOI: 10.2174/1570159X15666170720092442] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
110 Flores-Ramirez FJ, Matzeu A, Sánchez-Marín L, Martin-Fardon R. Blockade of corticotropin-releasing factor-1 receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol seeking in male Wistar rats: Evidence of interaction between CRF1 and orexin receptor signaling. Neuropharmacology 2022;:109046. [PMID: 35341789 DOI: 10.1016/j.neuropharm.2022.109046] [Reference Citation Analysis]
111 Staton CD, Yaeger JDW, Khalid D, Haroun F, Fernandez BS, Fernandez JS, Summers BK, Summers TR, Sathyanesan M, Newton SS, Summers CH. Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression. Neuropharmacology 2018;143:79-94. [PMID: 30240784 DOI: 10.1016/j.neuropharm.2018.09.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
112 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
113 Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 2006;148:752-9. [PMID: 16751790 DOI: 10.1038/sj.bjp.0706789] [Cited by in Crossref: 283] [Cited by in F6Publishing: 279] [Article Influence: 17.7] [Reference Citation Analysis]
114 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
115 Hirotsu C, Tufik S, Andersen ML. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci 2015;8:143-52. [PMID: 26779321 DOI: 10.1016/j.slsci.2015.09.002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 92] [Article Influence: 15.7] [Reference Citation Analysis]
116 Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2020;43:zsz296. [PMID: 31919524 DOI: 10.1093/sleep/zsz296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
117 Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014;8:117. [PMID: 24765071 DOI: 10.3389/fnbeh.2014.00117] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
118 Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci 2012;32:12961-72. [PMID: 22973020 DOI: 10.1523/JNEUROSCI.1284-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
119 Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ. Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology (Berl) 2010;212:251-65. [PMID: 20645079 DOI: 10.1007/s00213-010-1948-y] [Cited by in Crossref: 113] [Cited by in F6Publishing: 113] [Article Influence: 9.4] [Reference Citation Analysis]
120 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
121 Yamanaka A, Tsunematsu T. New approaches for the study of orexin function. J Neuroendocrinol 2010;22:818-24. [PMID: 20456607 DOI: 10.1111/j.1365-2826.2010.02015.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
122 Soya S, Shoji H, Hasegawa E, Hondo M, Miyakawa T, Yanagisawa M, Mieda M, Sakurai T. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci 2013;33:14549-57. [PMID: 24005305 DOI: 10.1523/JNEUROSCI.1130-13.2013] [Cited by in Crossref: 75] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
123 Soya S, Sakurai T. Evolution of Orexin Neuropeptide System: Structure and Function. Front Neurosci 2020;14:691. [PMID: 32754010 DOI: 10.3389/fnins.2020.00691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
124 Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 2010;1314:145-61. [PMID: 20026088 DOI: 10.1016/j.brainres.2009.12.027] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 5.8] [Reference Citation Analysis]
125 Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017;178:93-102. [PMID: 27746261 DOI: 10.1016/j.physbeh.2016.10.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
126 González JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64. [PMID: 19508695 DOI: 10.1111/j.1460-9568.2009.06789.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
127 Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 2010;30:2300-10. [PMID: 20147556 DOI: 10.1523/JNEUROSCI.5724-09.2010] [Cited by in Crossref: 124] [Cited by in F6Publishing: 81] [Article Influence: 10.3] [Reference Citation Analysis]
128 Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013;14:1262-76. [PMID: 24020974 DOI: 10.2174/13894501113149990208] [Cited by in Crossref: 171] [Cited by in F6Publishing: 163] [Article Influence: 21.4] [Reference Citation Analysis]
129 Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, Abizaid A. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience. 2009;164:351-359. [PMID: 19666088 DOI: 10.1016/j.neuroscience.2009.08.009] [Cited by in Crossref: 122] [Cited by in F6Publishing: 125] [Article Influence: 9.4] [Reference Citation Analysis]
130 Ferry B. The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved. Front Behav Neurosci 2014;8:164. [PMID: 24834041 DOI: 10.3389/fnbeh.2014.00164] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
131 Kosse C, Burdakov D. A unifying computational framework for stability and flexibility of arousal. Front Syst Neurosci 2014;8:192. [PMID: 25368557 DOI: 10.3389/fnsys.2014.00192] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
132 de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R. Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 2006;26:10372-5. [PMID: 17035520 DOI: 10.1523/JNEUROSCI.3118-06.2006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
133 Greene ES, Zampiga M, Sirri F, Ohkubo T, Dridi S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci Rep 2020;10:19191. [PMID: 33154530 DOI: 10.1038/s41598-020-76329-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
134 Patel AX, Miller SR, Nathan PJ, Kanakaraj P, Napolitano A, Lawrence P, Koch A, Bullmore ET. Neuroendocrine and sympathetic responses to an orexin receptor antagonist, SB-649868, and alprazolam following insulin-induced hypoglycemia in humans. Psychopharmacology (Berl) 2014;231:3817-28. [PMID: 24770625 DOI: 10.1007/s00213-014-3520-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
135 Fujisawa S, Komatsubara M, Tsukamoto-Yamauchi N, Iwata N, Nada T, Wada J, Otsuka F. Orexin A Enhances Pro-Opiomelanocortin Transcription Regulated by BMP-4 in Mouse Corticotrope AtT20 Cells. Int J Mol Sci 2021;22:4553. [PMID: 33925368 DOI: 10.3390/ijms22094553] [Reference Citation Analysis]
136 Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biol Psychiatry 2017;81:683-92. [PMID: 27955897 DOI: 10.1016/j.biopsych.2016.10.013] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
137 Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 2005;102:19168-73. [PMID: 16357203 DOI: 10.1073/pnas.0507480102] [Cited by in Crossref: 354] [Cited by in F6Publishing: 361] [Article Influence: 20.8] [Reference Citation Analysis]
138 Eacret D, Lemchi C, Caulfield JI, Cavigelli SA, Veasey SC, Blendy JA. Chronic Sleep Deprivation Blocks Voluntary Morphine Consumption but Not Conditioned Place Preference in Mice. Front Neurosci 2022;16:836693. [DOI: 10.3389/fnins.2022.836693] [Reference Citation Analysis]
139 Johnson PL, Truitt WA, Fitz SD, Lowry CA, Shekhar A. Neural pathways underlying lactate-induced panic. Neuropsychopharmacology. 2008;33:2093-2107. [PMID: 18059441 DOI: 10.1038/sj.npp.1301621] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis]
140 Boutrel B, de Lecea L. Addiction and arousal: the hypocretin connection. Physiol Behav. 2008;93:947-951. [PMID: 18262574 DOI: 10.1016/j.physbeh.2007.11.022] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 4.2] [Reference Citation Analysis]
141 Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019;10:100133. [PMID: 30937343 DOI: 10.1016/j.ynstr.2018.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
142 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
143 Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry 2013;4:41. [PMID: 23761766 DOI: 10.3389/fpsyt.2013.00041] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
144 Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017;41:551-61. [PMID: 28097729 DOI: 10.1111/acer.13336] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
145 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
146 Olney JJ, Navarro M, Thiele TE. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 2015;39:21-9. [PMID: 25623402 DOI: 10.1111/acer.12591] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
147 Plaza-Zabala A, Maldonado R, Berrendero F. The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012;45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
148 Romanowski CP, Fenzl T, Flachskamm C, Wurst W, Holsboer F, Deussing JM, Kimura M. Central deficiency of corticotropin-releasing hormone receptor type 1 (CRH-R1) abolishes effects of CRH on NREM but not on REM sleep in mice. Sleep 2010;33:427-36. [PMID: 20394311 DOI: 10.1093/sleep/33.4.427] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
149 Aujla H, Cannarsa R, Romualdi P, Ciccocioppo R, Martin-Fardon R, Weiss F. Modification of anxiety-like behaviors by nociceptin/orphanin FQ (N/OFQ) and time-dependent changes in N/OFQ-NOP gene expression following ethanol withdrawal. Addict Biol 2013;18:467-79. [PMID: 22804785 DOI: 10.1111/j.1369-1600.2012.00466.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
150 Criado JR, Wills DN, Walker BM, Ehlers CL. Effects of adolescent ethanol exposure on sleep in adult rats. Alcohol 2008;42:631-9. [PMID: 18922666 DOI: 10.1016/j.alcohol.2008.08.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
151 Bongaard BS. Mind Over Cupcake. EXPLORE 2008;4:267-72. [DOI: 10.1016/j.explore.2008.04.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
152 Dong X, Li Y, Kirouac GJ. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on the expression of conditioned fear in rats. Front Behav Neurosci 2015;9:161. [PMID: 26136671 DOI: 10.3389/fnbeh.2015.00161] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
153 Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides 2007;41:329-37. [PMID: 17590434 DOI: 10.1016/j.npep.2007.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
154 Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020;44:354-67. [PMID: 31840823 DOI: 10.1111/acer.14264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
155 Roseboom PH, Nanda SA, Bakshi VP, Trentani A, Newman SM, Kalin NH. Predator threat induces behavioral inhibition, pituitary-adrenal activation and changes in amygdala CRF-binding protein gene expression. Psychoneuroendocrinology 2007;32:44-55. [PMID: 17116372 DOI: 10.1016/j.psyneuen.2006.10.002] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 4.9] [Reference Citation Analysis]
156 Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2011;51:243-66. [PMID: 21034217 DOI: 10.1146/annurev-pharmtox-010510-100528] [Cited by in Crossref: 202] [Cited by in F6Publishing: 194] [Article Influence: 18.4] [Reference Citation Analysis]
157 Kohlmeier KA, Tyler CJ, Kalogiannis M, Ishibashi M, Kristensen MP, Gumenchuk I, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 2013;7:246. [PMID: 24391530 DOI: 10.3389/fnins.2013.00246] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
158 Li HT, Donegan DC, Peleg-Raibstein D, Burdakov D. Hypothalamic deep brain stimulation as a strategy to manage anxiety disorders. Proc Natl Acad Sci U S A 2022;119:e2113518119. [PMID: 35412900 DOI: 10.1073/pnas.2113518119] [Reference Citation Analysis]
159 Fetissov SO, Hamze Sinno M, Coëffier M, Bole-Feysot C, Ducrotté P, Hökfelt T, Déchelotte P. Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora. Nutrition 2008;24:348-59. [PMID: 18262391 DOI: 10.1016/j.nut.2007.12.006] [Cited by in Crossref: 110] [Cited by in F6Publishing: 102] [Article Influence: 7.9] [Reference Citation Analysis]
160 Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020;14:101. [PMID: 32116534 DOI: 10.3389/fnins.2020.00101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]