BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Choi EA, McNally GP. Paraventricular Thalamus Balances Danger and Reward. J Neurosci 2017;37:3018-29. [PMID: 28193686 DOI: 10.1523/JNEUROSCI.3320-16.2017] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 10.2] [Reference Citation Analysis]
Number Citing Articles
1 Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. Elife 2021;10:e57634. [PMID: 34738905 DOI: 10.7554/eLife.57634] [Reference Citation Analysis]
2 Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021;15:634618. [PMID: 33664657 DOI: 10.3389/fnbeh.2021.634618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Goedecke L, Bengoetxea X, Blaesse P, Pape HC, Jüngling K. µ-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala. Sci Rep 2019;9:17837. [PMID: 31780740 DOI: 10.1038/s41598-019-54128-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
4 Lustberg D, Tillage RP, Bai Y, Pruitt M, Liles LC, Weinshenker D. Noradrenergic circuits in the forebrain control affective responses to novelty. Psychopharmacology (Berl) 2020;237:3337-55. [PMID: 32821984 DOI: 10.1007/s00213-020-05615-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
5 Bubb EJ, Aggleton JP, O'Mara SM, Nelson AJD. Chemogenetics Reveal an Anterior Cingulate-Thalamic Pathway for Attending to Task-Relevant Information. Cereb Cortex 2021;31:2169-86. [PMID: 33251536 DOI: 10.1093/cercor/bhaa353] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rowson SA, Pleil KE. Influences of Stress and Sex on the Paraventricular Thalamus: Implications for Motivated Behavior. Front Behav Neurosci 2021;15:636203. [PMID: 33716683 DOI: 10.3389/fnbeh.2021.636203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020;14:590528. [PMID: 33177999 DOI: 10.3389/fnbeh.2020.590528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
8 De Groote A, de Kerchove d'Exaerde A. Thalamo-Nucleus Accumbens Projections in Motivated Behaviors and Addiction. Front Syst Neurosci 2021;15:711350. [PMID: 34335197 DOI: 10.3389/fnsys.2021.711350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kirouac GJ, Li S, Li S. Convergence of monosynaptic inputs from neurons in the brainstem and forebrain on parabrachial neurons that project to the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35838792 DOI: 10.1007/s00429-022-02534-6] [Reference Citation Analysis]
10 Sharma S, Kim LH, Mayr KA, Elliott DA, Whelan PJ. Parallel descending dopaminergic connectivity of A13 cells to the brainstem locomotor centers. Sci Rep 2018;8:7972. [PMID: 29789702 DOI: 10.1038/s41598-018-25908-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
11 Gao C, Leng Y, Ma J, Rooke V, Rodriguez-Gonzalez S, Ramakrishnan C, Deisseroth K, Penzo MA. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nat Neurosci 2020;23:217-28. [PMID: 31932767 DOI: 10.1038/s41593-019-0572-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
12 Freeman AR, Hare JF, Caldwell HK. Call-specific patterns of neural activation in auditory processing of Richardson's ground squirrel alarm calls. Brain Behav 2020;10:e01629. [PMID: 32307882 DOI: 10.1002/brb3.1629] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Levine OB, Skelly MJ, Miller JD, Rivera-Irizarry JK, Rowson SA, DiBerto JF, Rinker JA, Thiele TE, Kash TL, Pleil KE. The paraventricular thalamus provides a polysynaptic brake on limbic CRF neurons to sex-dependently blunt binge alcohol drinking and avoidance behavior in mice. Nat Commun 2021;12:5080. [PMID: 34426574 DOI: 10.1038/s41467-021-25368-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Barettino C, Ballesteros-Gonzalez Á, Aylón A, Soler-Sanchis X, Ortí L, Díaz S, Reillo I, García-García F, Iborra FJ, Lai C, Dehorter N, Leinekugel X, Flames N, Del Pino I. Developmental Disruption of Erbb4 in Pet1+ Neurons Impairs Serotonergic Sub-System Connectivity and Memory Formation. Front Cell Dev Biol 2021;9:770458. [PMID: 34957103 DOI: 10.3389/fcell.2021.770458] [Reference Citation Analysis]
15 Lafferty CK, Britt JP. Off-Target Influences of Arch-Mediated Axon Terminal Inhibition on Network Activity and Behavior. Front Neural Circuits 2020;14:10. [PMID: 32269514 DOI: 10.3389/fncir.2020.00010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Quiñones-Laracuente K, Vega-Medina A, Quirk GJ. Time-Dependent Recruitment of Prelimbic Prefrontal Circuits for Retrieval of Fear Memory. Front Behav Neurosci 2021;15:665116. [PMID: 34012387 DOI: 10.3389/fnbeh.2021.665116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Campus P, Covelo IR, Kim Y, Parsegian A, Kuhn BN, Lopez SA, Neumaier JF, Ferguson SM, Solberg Woods LC, Sarter M, Flagel SB. The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. Elife 2019;8:e49041. [PMID: 31502538 DOI: 10.7554/eLife.49041] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
18 Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021;15:627633. [PMID: 33732118 DOI: 10.3389/fnbeh.2021.627633] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
19 Worden R, Bennett MS, Neacsu V. The Thalamus as a Blackboard for Perception and Planning. Front Behav Neurosci 2021;15:633872. [PMID: 33732119 DOI: 10.3389/fnbeh.2021.633872] [Reference Citation Analysis]
20 Petrovich GD. Feeding Behavior Survival Circuit: Anticipation & Competition. Curr Opin Behav Sci 2018;24:137-42. [PMID: 31086808 DOI: 10.1016/j.cobeha.2018.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
21 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
22 Do-Monte FH, Kirouac GJ. Boosting of Thalamic D2 Dopaminergic Transmission: A Potential Strategy for Drug-Seeking Attenuation. eNeuro 2017;4:ENEURO. [PMID: 29279859 DOI: 10.1523/ENEURO.0378-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
23 Gaspari S, Quenneville S, Rodriguez Sanchez-Archidona A, Thorens B, Croizier S. Structural and molecular characterization of paraventricular thalamic glucokinase-expressing neuronal circuits in the mouse. J Comp Neurol 2022. [PMID: 35303367 DOI: 10.1002/cne.25312] [Reference Citation Analysis]
24 Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021;15:706713. [PMID: 34220458 DOI: 10.3389/fnint.2021.706713] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ishii H, Onodera M, Ohara S, Tsutsui KI, Iijima T. Sex Differences in Risk Preference and c-Fos Expression in Paraventricular Thalamic Nucleus of Rats During Gambling Task. Front Behav Neurosci 2018;12:68. [PMID: 29692713 DOI: 10.3389/fnbeh.2018.00068] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
26 Dong X, Li S, Kirouac GJ. A projection from the paraventricular nucleus of the thalamus to the shell of the nucleus accumbens contributes to footshock stress-induced social avoidance. Neurobiol Stress 2020;13:100266. [PMID: 33344719 DOI: 10.1016/j.ynstr.2020.100266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Li S, Dong X, Kirouac GJ. Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2021;226:1779-802. [PMID: 34032911 DOI: 10.1007/s00429-021-02289-6] [Reference Citation Analysis]
28 Giannotti G, Gong S, Fayette N, Heinsbroek JA, Orfila JE, Herson PS, Ford CP, Peters J. Extinction blunts paraventricular thalamic contributions to heroin relapse. Cell Rep 2021;36:109605. [PMID: 34433067 DOI: 10.1016/j.celrep.2021.109605] [Reference Citation Analysis]
29 Mátyás F, Komlósi G, Babiczky Á, Kocsis K, Barthó P, Barsy B, Dávid C, Kanti V, Porrero C, Magyar A, Szűcs I, Clasca F, Acsády L. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018;21:1551-62. [PMID: 30349105 DOI: 10.1038/s41593-018-0251-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
30 Müller I, Brinkman AL, Sowinski EM, Sangha S. Adolescent conditioning affects rate of adult fear, safety and reward learning during discriminative conditioning. Sci Rep 2018;8:17315. [PMID: 30470766 DOI: 10.1038/s41598-018-35678-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
31 Choi EA, Jean-Richard-Dit-Bressel P, Clifford CWG, McNally GP. Paraventricular Thalamus Controls Behavior during Motivational Conflict. J Neurosci 2019;39:4945-58. [PMID: 30979815 DOI: 10.1523/JNEUROSCI.2480-18.2019] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
32 Kark SM, Birnie MT, Baram TZ, Yassa MA. Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI. Front Integr Neurosci 2021;15:662293. [PMID: 33967711 DOI: 10.3389/fnint.2021.662293] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020;11:6218. [PMID: 33277492 DOI: 10.1038/s41467-020-19980-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022;16:936036. [DOI: 10.3389/fnbeh.2022.936036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Barson JR, Mack NR, Gao WJ. The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci 2020;14:598469. [PMID: 33192373 DOI: 10.3389/fnbeh.2020.598469] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
36 Ma J, du Hoffmann J, Kindel M, Beas BS, Chudasama Y, Penzo MA. Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nat Neurosci 2021;24:1429-40. [PMID: 34413514 DOI: 10.1038/s41593-021-00912-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Viena TD, Rasch GE, Allen TA. Dual medial prefrontal cortex and hippocampus projecting neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2022. [PMID: 35279742 DOI: 10.1007/s00429-022-02478-x] [Reference Citation Analysis]
38 Otis JM, Zhu M, Namboodiri VMK, Cook CA, Kosyk O, Matan AM, Ying R, Hashikawa Y, Hashikawa K, Trujillo-Pisanty I, Guo J, Ung RL, Rodriguez-Romaguera J, Anton ES, Stuber GD. Paraventricular Thalamus Projection Neurons Integrate Cortical and Hypothalamic Signals for Cue-Reward Processing. Neuron 2019;103:423-431.e4. [PMID: 31196673 DOI: 10.1016/j.neuron.2019.05.018] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 15.7] [Reference Citation Analysis]
39 Zhu Y, Nachtrab G, Keyes PC, Allen WE, Luo L, Chen X. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 2018;362:423-9. [PMID: 30361366 DOI: 10.1126/science.aat0481] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 15.5] [Reference Citation Analysis]
40 Engelke DS, Zhang XO, O'Malley JJ, Fernandez-Leon JA, Li S, Kirouac GJ, Beierlein M, Do-Monte FH. A hypothalamic-thalamostriatal circuit that controls approach-avoidance conflict in rats. Nat Commun 2021;12:2517. [PMID: 33947849 DOI: 10.1038/s41467-021-22730-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
41 Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021;15:671096. [PMID: 33986649 DOI: 10.3389/fnbeh.2021.671096] [Reference Citation Analysis]
42 Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022;25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Reference Citation Analysis]
43 Bravo-Rivera H, Rubio Arzola P, Caban-Murillo A, Vélez-Avilés AN, Ayala-Rosario SN, Quirk GJ. Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Front Neurosci 2021;15:608922. [PMID: 33716644 DOI: 10.3389/fnins.2021.608922] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Cheng J, Wang J, Ma X, Ullah R, Shen Y, Zhou YD. Anterior Paraventricular Thalamus to Nucleus Accumbens Projection Is Involved in Feeding Behavior in a Novel Environment. Front Mol Neurosci 2018;11:202. [PMID: 29930498 DOI: 10.3389/fnmol.2018.00202] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]