BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 2004;24:10493-501. [PMID: 15548664 DOI: 10.1523/JNEUROSCI.3171-04.2004] [Cited by in Crossref: 151] [Cited by in F6Publishing: 63] [Article Influence: 8.9] [Reference Citation Analysis]
Number Citing Articles
1 Van Drunen R, Eckel-Mahan K. Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks Sleep 2021;3:189-226. [PMID: 33668705 DOI: 10.3390/clockssleep3010012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
2 Silver R, Balsam P. Oscillators entrained by food and the emergence of anticipatory timing behaviors. Sleep Biol Rhythms 2010;8:120-36. [PMID: 21544255 DOI: 10.1111/j.1479-8425.2010.00438.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
3 Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 2006;103:12150-5. [PMID: 16880388 DOI: 10.1073/pnas.0604189103] [Cited by in Crossref: 211] [Cited by in F6Publishing: 203] [Article Influence: 13.2] [Reference Citation Analysis]
4 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
5 Wiater MF, Mukherjee S, Li AJ, Dinh TT, Rooney EM, Simasko SM, Ritter S. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011;301:R1569-83. [PMID: 21880863 DOI: 10.1152/ajpregu.00168.2011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
6 Burdakov D, Alexopoulos H. Metabolic state signalling through central hypocretin/orexin neurons. J Cell Mol Med 2005;9:795-803. [PMID: 16364191 DOI: 10.1111/j.1582-4934.2005.tb00380.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 2.3] [Reference Citation Analysis]
7 Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM, Herzog ED, Imai S. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci 2010;30:10220-32. [PMID: 20668205 DOI: 10.1523/JNEUROSCI.1385-10.2010] [Cited by in Crossref: 150] [Cited by in F6Publishing: 91] [Article Influence: 12.5] [Reference Citation Analysis]
8 Shelley DN, Dwyer E, Johnson C, Wittkowski KM, Pfaff DW. Interactions between estrogen effects and hunger effects in ovariectomized female mice. I. Measures of arousal. Horm Behav 2007;52:546-53. [PMID: 17868674 DOI: 10.1016/j.yhbeh.2007.07.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
9 Perez-Leighton CE, Grace M, Billington CJ, Kotz CM. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiol Behav 2014;135:104-11. [PMID: 24912135 DOI: 10.1016/j.physbeh.2014.06.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
10 Castro-Faúndez J, Díaz J, Ocampo-Garcés A. Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat. Sleep 2016;39:1451-65. [PMID: 27091526 DOI: 10.5665/sleep.5982] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
11 Xu YX, Liu GY, Jiang Q, Bi HQ, Wang SC, Zhang PP, Gao CB, Chen GH, Cheng WH, Chen GJ, Zhu DF, Zhong MK, Xu Q. Effect of Restricted Feeding on Metabolic Health and Sleep-Wake Rhythms in Aging Mice. Front Neurosci 2021;15:745227. [PMID: 34557073 DOI: 10.3389/fnins.2021.745227] [Reference Citation Analysis]
12 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Hsu TM, Suarez AN, Kanoski SE. Ghrelin: A link between memory and ingestive behavior. Physiol Behav 2016;162:10-7. [PMID: 27072509 DOI: 10.1016/j.physbeh.2016.03.039] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
14 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
15 Begriche K, Marston OJ, Rossi J, Burke LK, McDonald P, Heisler LK, Butler AA. Melanocortin-3 receptors are involved in adaptation to restricted feeding. Genes Brain Behav 2012;11:291-302. [PMID: 22353545 DOI: 10.1111/j.1601-183X.2012.00766.x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
16 Sasaki T. Neural and Molecular Mechanisms Involved in Controlling the Quality of Feeding Behavior: Diet Selection and Feeding Patterns. Nutrients 2017;9:E1151. [PMID: 29053636 DOI: 10.3390/nu9101151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
17 Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 2014;124:604-16. [PMID: 24382351 DOI: 10.1172/JCI71017] [Cited by in Crossref: 96] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
18 Fadel JR, Jolivalt CG, Reagan LP. Food for thought: the role of appetitive peptides in age-related cognitive decline. Ageing Res Rev 2013;12:764-76. [PMID: 23416469 DOI: 10.1016/j.arr.2013.01.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
19 Hayasaka N, Aoki K, Kinoshita S, Yamaguchi S, Wakefield JK, Tsuji-Kawahara S, Horikawa K, Ikegami H, Wakana S, Murakami T, Ramabhadran R, Miyazawa M, Shibata S. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice. PLoS One 2011;6:e17655. [PMID: 21408016 DOI: 10.1371/journal.pone.0017655] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
20 Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci 2021;15:636764. [PMID: 33815041 DOI: 10.3389/fnins.2021.636764] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol 2020;15:183-91. [PMID: 32617440 DOI: 10.1016/j.cophys.2020.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Ma X, Zubcevic L, Brüning JC, Ashcroft FM, Burdakov D. Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 2007;27:1529-33. [PMID: 17301161 DOI: 10.1523/JNEUROSCI.3583-06.2007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
23 Khoo SY, Brown RM. Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA? CNS Drugs 2014;28:713-30. [PMID: 24942635 DOI: 10.1007/s40263-014-0179-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
24 Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018;33:458-74. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
25 Szentirmai E, Kapás L, Sun Y, Smith RG, Krueger JM. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2010;298:R467-77. [PMID: 19939974 DOI: 10.1152/ajpregu.00557.2009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 4.5] [Reference Citation Analysis]
26 McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, Benca RM, Biggio J, Boggiano MM, Eisenmann JC. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49:868-913. [PMID: 19960394 DOI: 10.1080/10408390903372599] [Cited by in Crossref: 416] [Cited by in F6Publishing: 364] [Article Influence: 34.7] [Reference Citation Analysis]
27 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
28 Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2010;1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
29 Lutter M, Krishnan V, Russo SJ, Jung S, McClung CA, Nestler EJ. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J Neurosci 2008;28:3071-5. [PMID: 18354010 DOI: 10.1523/JNEUROSCI.5584-07.2008] [Cited by in Crossref: 165] [Cited by in F6Publishing: 81] [Article Influence: 11.8] [Reference Citation Analysis]
30 Ribeiro AC, Sawa E, Carren-LeSauter I, LeSauter J, Silver R, Pfaff DW. Two forces for arousal: Pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proc Natl Acad Sci U S A 2007;104:20078-83. [PMID: 18056628 DOI: 10.1073/pnas.0710096104] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
31 Namvar S, Gyte A, Denn M, Leighton B, Piggins HD. Dietary fat and corticosterone levels are contributing factors to meal anticipation. Am J Physiol Regul Integr Comp Physiol 2016;310:R711-23. [PMID: 26818054 DOI: 10.1152/ajpregu.00308.2015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
32 Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New Insights Into the Circadian Rhythm and Its Related Diseases. Front Physiol 2019;10:682. [PMID: 31293431 DOI: 10.3389/fphys.2019.00682] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 14.7] [Reference Citation Analysis]
33 González JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64. [PMID: 19508695 DOI: 10.1111/j.1460-9568.2009.06789.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
34 Hou T, Wang C, Joshi S, O'Hara BF, Gong MC, Guo Z. Active Time-Restricted Feeding Improved Sleep-Wake Cycle in db/db Mice. Front Neurosci 2019;13:969. [PMID: 31619950 DOI: 10.3389/fnins.2019.00969] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
35 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
36 España RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 2007;30:1417-25. [PMID: 18041476 DOI: 10.1093/sleep/30.11.1417] [Cited by in Crossref: 61] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
37 Wiater MF, Li AJ, Dinh TT, Jansen HT, Ritter S. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction. Am J Physiol Regul Integr Comp Physiol 2013;305:R949-60. [PMID: 23986359 DOI: 10.1152/ajpregu.00032.2013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
38 Ribeiro AC, LeSauter J, Dupré C, Pfaff DW. Relationship of arousal to circadian anticipatory behavior: ventromedial hypothalamus: one node in a hunger-arousal network. Eur J Neurosci 2009;30:1730-8. [PMID: 19863654 DOI: 10.1111/j.1460-9568.2009.06969.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
39 Zhang S, Zeitzer JM, Sakurai T, Nishino S, Mignot E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol 2007;581:649-63. [PMID: 17379635 DOI: 10.1113/jphysiol.2007.129510] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 4.9] [Reference Citation Analysis]
40 Yeoh JW, James MH, Adams CD, Bains JS, Sakurai T, Aston-Jones G, Graham BA, Dayas CV. Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology 2019;154:22-33. [PMID: 30253175 DOI: 10.1016/j.neuropharm.2018.09.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
41 Aitta-Aho T, Phillips BU, Pappa E, Hay YA, Harnischfeger F, Heath CJ, Saksida LM, Bussey TJ, Apergis-Schoute J. Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling. eNeuro 2017;4:ENEURO. [PMID: 28497110 DOI: 10.1523/ENEURO.0328-16.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
42 Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015;38:1361-70. [PMID: 25845696 DOI: 10.5665/sleep.4970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
43 Patton DF, Mistlberger RE. Circadian adaptations to meal timing: neuroendocrine mechanisms. Front Neurosci. 2013;7:185. [PMID: 24133410 DOI: 10.3389/fnins.2013.00185] [Cited by in Crossref: 100] [Cited by in F6Publishing: 96] [Article Influence: 11.1] [Reference Citation Analysis]
44 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
45 Mieda M, Tsujino N, Sakurai T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front Endocrinol (Lausanne) 2013;4:57. [PMID: 23730297 DOI: 10.3389/fendo.2013.00057] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
46 Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T. Feeding-elicited cataplexy in orexin knockout mice. Neuroscience 2009;161:970-7. [PMID: 19362119 DOI: 10.1016/j.neuroscience.2009.04.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 2.9] [Reference Citation Analysis]
47 Chung S, Funakoshi T, Civelli O. Orphan GPCR research. Br J Pharmacol 2008;153 Suppl 1:S339-46. [PMID: 18071299 DOI: 10.1038/sj.bjp.0707606] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 3.6] [Reference Citation Analysis]
48 Begriche K, Sutton GM, Butler AA. Homeostastic and non-homeostatic functions of melanocortin-3 receptors in the control of energy balance and metabolism. Physiol Behav 2011;104:546-54. [PMID: 21497617 DOI: 10.1016/j.physbeh.2011.04.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
49 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
50 Begriche K, Sutton GM, Fang J, Butler AA. The role of melanocortin neuronal pathways in circadian biology: a new homeostatic output involving melanocortin-3 receptors? Obes Rev 2009;10 Suppl 2:14-24. [PMID: 19849798 DOI: 10.1111/j.1467-789X.2009.00662.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
51 Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 2008;1205:47-54. [PMID: 18343358 DOI: 10.1016/j.brainres.2008.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
52 Zhou L, Smith RJ, Do PH, Aston-Jones G, See RE. Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology 2012;63:1201-7. [PMID: 22971541 DOI: 10.1016/j.neuropharm.2012.07.044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
53 Yamanaka A, Tsunematsu T. New approaches for the study of orexin function. J Neuroendocrinol 2010;22:818-24. [PMID: 20456607 DOI: 10.1111/j.1365-2826.2010.02015.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
54 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
55 Gautron L, Layé S. Neurobiology of inflammation-associated anorexia. Front Neurosci 2009;3:59. [PMID: 20582290 DOI: 10.3389/neuro.23.003.2009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 0.8] [Reference Citation Analysis]
56 Karnani MM, Venner A, Jensen LT, Fugger L, Burdakov D. Direct and indirect control of orexin/hypocretin neurons by glycine receptors. J Physiol 2011;589:639-51. [PMID: 21135047 DOI: 10.1113/jphysiol.2010.198457] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
57 Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017;350:124-32. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
58 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Hypothalamic peptides controlling alcohol intake: differential effects on microstructure of drinking bouts. Alcohol 2014;48:657-64. [PMID: 25241055 DOI: 10.1016/j.alcohol.2014.08.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
59 Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, Myers MG Jr, Marks DL. Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J Neurosci 2011;31:11376-86. [PMID: 21813697 DOI: 10.1523/JNEUROSCI.2311-11.2011] [Cited by in Crossref: 85] [Cited by in F6Publishing: 60] [Article Influence: 7.7] [Reference Citation Analysis]
60 Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2019;42:zsz157. [PMID: 31329251 DOI: 10.1093/sleep/zsz157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
61 Tang Y, Benusiglio D, Grinevich V, Lin L. Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Front Behav Neurosci 2016;10:91. [PMID: 27242460 DOI: 10.3389/fnbeh.2016.00091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
62 Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014;39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
63 Hondo M, Nagai K, Ohno K, Kisanuki Y, Willie JT, Watanabe T, Yanagisawa M, Sakurai T. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol (Oxf) 2010;198:287-94. [PMID: 19694625 DOI: 10.1111/j.1748-1716.2009.02032.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
64 Hsu JL, Yu L, Sullivan E, Bowman M, Mistlberger RE, Tecott LH. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice. PLoS One 2010;5:e11802. [PMID: 20668550 DOI: 10.1371/journal.pone.0011802] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
65 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
66 Pignatelli J, de Sevilla MEF, Sperber J, Horrillo D, Medina-gomez G, Aleman IT. Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypo-Thalamic Orexin Neurons. IJMS 2022;23:4679. [DOI: 10.3390/ijms23094679] [Reference Citation Analysis]
67 Zanghi BM, Kerr W, de Rivera C, Araujo JA, Milgram NW. Effect of age and feeding schedule on diurnal rest/activity rhythms in dogs. Journal of Veterinary Behavior 2012;7:339-47. [DOI: 10.1016/j.jveb.2012.01.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Li SB, Jones JR, de Lecea L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 2016;18:7. [PMID: 26733323 DOI: 10.1007/s11920-015-0639-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]