BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014;34:4708-27. [PMID: 24672016 DOI: 10.1523/JNEUROSCI.2617-13.2014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 93] [Article Influence: 19.9] [Reference Citation Analysis]
Number Citing Articles
1 Rivera-Perez LM, Kwapiszewski JT, Roberts MT. α3β4 Nicotinic Acetylcholine Receptors Strongly Modulate the Excitability of VIP Neurons in the Mouse Inferior Colliculus. Front Neural Circuits 2021;15:709387. [PMID: 34434092 DOI: 10.3389/fncir.2021.709387] [Reference Citation Analysis]
2 Qiu MH, Chen MC, Lu J. Cortical neuronal activity does not regulate sleep homeostasis. Neuroscience 2015;297:211-8. [PMID: 25864961 DOI: 10.1016/j.neuroscience.2015.03.070] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
3 Aygün D, Ertaş Fİ, Gündüz A, Benbir Şenel G, Karadeniz D, Kızıltan M. The role of pedunculopontine nucleus in isolated REM sleep behavior disorder and REM sleep without atonia. Parkinsonism Relat Disord 2021;84:68-73. [PMID: 33571873 DOI: 10.1016/j.parkreldis.2021.01.025] [Reference Citation Analysis]
4 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
5 Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease. Front Pharmacol 2019;10:1294. [PMID: 31736763 DOI: 10.3389/fphar.2019.01294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
6 Chen MC, Sorooshyari SK, Lin JS, Lu J. A Layered Control Architecture of Sleep and Arousal. Front Comput Neurosci 2020;14:8. [PMID: 32116622 DOI: 10.3389/fncom.2020.00008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Mizrahi-Kliger AD, Feldmann LK, Kühn AA, Bergman H. Etiologies of insomnia in Parkinson's disease - Lessons from human studies and animal models. Exp Neurol 2022;350:113976. [PMID: 35026228 DOI: 10.1016/j.expneurol.2022.113976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Billard MW, Bahari F, Kimbugwe J, Alloway KD, Gluckman BJ. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. eNeuro 2018;5:ENEURO. [PMID: 30627656 DOI: 10.1523/ENEURO.0261-18.2018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
9 Parkar A, Fedrigon DC, Alam F, Vanini G, Mashour GA, Pal D. Carbachol and Nicotine in Prefrontal Cortex Have Differential Effects on Sleep-Wake States. Front Neurosci 2020;14:567849. [PMID: 33328847 DOI: 10.3389/fnins.2020.567849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019;97:1515-20. [PMID: 30916810 DOI: 10.1002/jnr.24417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2021. [PMID: 34510281 DOI: 10.1007/s00429-021-02375-9] [Reference Citation Analysis]
12 Lina JM, O'Callaghan EK, Mongrain V. Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders. Clocks Sleep 2019;1:50-64. [PMID: 33089154 DOI: 10.3390/clockssleep1010006] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Domonkos A, Nikitidou Ledri L, Laszlovszky T, Cserép C, Borhegyi Z, Papp E, Nyiri G, Freund TF, Varga V. Divergent in vivo activity of non-serotonergic and serotonergic VGluT3-neurones in the median raphe region. J Physiol 2016;594:3775-90. [PMID: 27028801 DOI: 10.1113/JP272036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
14 Urbano FJ, Luster BR, D'Onofrio S, Mahaffey S, Garcia-Rill E. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons. J Vis Exp 2016. [PMID: 27684729 DOI: 10.3791/54685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
15 Cissé Y, Ishibashi M, Jost J, Toossi H, Mainville L, Adamantidis A, Leonard CS, Jones BE. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. J Neurosci 2020;40:5970-89. [PMID: 32576622 DOI: 10.1523/JNEUROSCI.2875-19.2020] [Reference Citation Analysis]
16 Garcia-Rill E, Mahaffey S, Hyde JR, Urbano FJ. Bottom-up gamma maintenance in various disorders. Neurobiol Dis 2019;128:31-9. [PMID: 29353013 DOI: 10.1016/j.nbd.2018.01.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
17 Poulet JFA, Crochet S. The Cortical States of Wakefulness. Front Syst Neurosci 2018;12:64. [PMID: 30670952 DOI: 10.3389/fnsys.2018.00064] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
18 Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Sci Rep 2019;9:2570. [PMID: 30796293 DOI: 10.1038/s41598-019-39203-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016;123:655-65. [PMID: 26597124 DOI: 10.1007/s00702-015-1485-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
20 Sheroziya M, Timofeev I. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation. J Neurosci 2015;35:13006-19. [PMID: 26400932 DOI: 10.1523/JNEUROSCI.1359-15.2015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
21 Garzón M, Pickel VM. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum. J Comp Neurol 2016;524:3084-103. [PMID: 27038330 DOI: 10.1002/cne.24010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
22 D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. Curr Psychopharmacol 2017;6:122-35. [PMID: 29354402 DOI: 10.2174/2211556006666171024141949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
23 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
25 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
26 Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015;9:475. [PMID: 26733789 DOI: 10.3389/fnins.2015.00475] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
27 Baksa B, Kovács A, Bayasgalan T, Szentesi P, Kőszeghy Á, Szücs P, Pál B. Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus. Cell Mol Life Sci 2019;76:2799-815. [PMID: 30734834 DOI: 10.1007/s00018-019-03025-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Boutin RC, Alsahafi Z, Pagliardini S. Cholinergic modulation of the parafacial respiratory group. J Physiol 2017;595:1377-92. [PMID: 27808424 DOI: 10.1113/JP273012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
29 Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130:925-40. [PMID: 30981899 DOI: 10.1016/j.clinph.2019.03.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
30 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Tsoukalas I. Theory of Mind: Towards an Evolutionary Theory. Evolutionary Psychological Science 2018;4:38-66. [DOI: 10.1007/s40806-017-0112-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
32 Dautan D, Huerta-Ocampo I, Gut NK, Valencia M, Kondabolu K, Kim Y, Gerdjikov TV, Mena-Segovia J. Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat Commun 2020;11:1739. [PMID: 32269213 DOI: 10.1038/s41467-020-15514-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
33 Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019;10:1414. [PMID: 31827439 DOI: 10.3389/fphar.2019.01414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
34 Zhu L, Chamberlin NL, Arrigoni E. Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep. J Neurosci 2019;39:7910-9. [PMID: 31420456 DOI: 10.1523/JNEUROSCI.0461-19.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
35 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Luster B, D'Onofrio S, Urbano F, Garcia-Rill E. High-threshold Ca2+ channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2015;3:e12431. [PMID: 26109189 DOI: 10.14814/phy2.12431] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
37 Garcia-Rill E, Luster B, Mahaffey S, MacNicol M, Hyde JR, D'Onofrio SM, Phillips C. Pedunculopontine Gamma Band Activity and Development. Brain Sci 2015;5:546-67. [PMID: 26633526 DOI: 10.3390/brainsci5040546] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
38 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
39 Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021;15:638007. [PMID: 34163331 DOI: 10.3389/fncir.2021.638007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Urbano FJ, Bisagno V, Mahaffey S, Lee SH, Garcia-Rill E. Class II histone deacetylases require P/Q-type Ca2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus. Sci Rep 2018;8:13156. [PMID: 30177751 DOI: 10.1038/s41598-018-31584-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
41 Urbano FJ, D'Onofrio SM, Luster BR, Beck PB, Hyde JR, Bisagno V, Garcia-Rill E. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep. Front Neurol 2014;5:210. [PMID: 25368599 DOI: 10.3389/fneur.2014.00210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
42 Okada KI, Kobayashi Y. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks. Front Syst Neurosci 2016;10:94. [PMID: 27891082 DOI: 10.3389/fnsys.2016.00094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
43 Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021;3:312-41. [PMID: 34207633 DOI: 10.3390/clockssleep3020020] [Reference Citation Analysis]
44 Karachi C, Francois C. Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2018;125:471-83. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
45 Boucetta S, Salimi A, Dadar M, Jones BE, Collins DL, Dang-Vu TT. Structural Brain Alterations Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson's Disease. Sci Rep 2016;6:26782. [PMID: 27245317 DOI: 10.1038/srep26782] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 11.5] [Reference Citation Analysis]
46 Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 1995;15:5859-69. [PMID: 7666171 [PMID: 7666171 DOI: 10.1523/jneurosci.15-09-05859.1995] [Cited by in Crossref: 276] [Article Influence: 10.2] [Reference Citation Analysis]
47 Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons. Front Neurol 2015;6:120. [PMID: 26082752 DOI: 10.3389/fneur.2015.00120] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
48 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
49 Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022;16:877054. [DOI: 10.3389/fnins.2022.877054] [Reference Citation Analysis]
50 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 20.7] [Reference Citation Analysis]
51 Pal B. Response to "Concerns regarding Baksa et al., Cell Molec. Life Sci., 2019." by Edgar Garcia-Rill and Francisco J. Urbano (CMLS-D-18-0156R1). Cell Mol Life Sci 2019;76:4583-7. [PMID: 31691836 DOI: 10.1007/s00018-019-03308-w] [Reference Citation Analysis]
52 Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020;12:3. [PMID: 32116639 DOI: 10.3389/fnsyn.2020.00003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
53 Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016;336:102-13. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
54 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Melgarejo-Gutiérrez M, García-García F, Hernández-Márquez G, Morgado-Valle C, Acosta-Hernández ME, Rodríguez-Alba JC. Sleep Recovery Restored Neuroglobin Immunoreactivity in Rat LDTg-PPTg Nuclei. Sleep Disord 2020;2020:8353854. [PMID: 32774927 DOI: 10.1155/2020/8353854] [Reference Citation Analysis]
56 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Struct Funct 2017;222:3163-78. [PMID: 28299422 DOI: 10.1007/s00429-017-1392-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
57 Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S. The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state. J Neural Transm (Vienna) 2016;123:667-78. [PMID: 27216823 DOI: 10.1007/s00702-016-1577-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
58 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
59 Högl B, Arnulf I, Bergmann M, Cesari M, Gan-Or Z, Heidbreder A, Iranzo A, Krohn L, Luppi PH, Mollenhauer B, Provini F, Santamaria J, Trenkwalder C, Videnovic A, Stefani A. Rapid eye movement sleep behaviour disorder: Past, present, and future. J Sleep Res 2022;:e13612. [PMID: 35470494 DOI: 10.1111/jsr.13612] [Reference Citation Analysis]
60 Lewis LA, Urban CM, Hashim SA. A Non-Invasive Determination of Ketosis-Induced Elimination of Chronic Daytime Somnolence in a Patient with Late-Stage Dementia (Assessed with Type 3 Diabetes): A Potential Role of Neurogenesis. J Alzheimers Dis Rep 2021;5:827-46. [PMID: 35088033 DOI: 10.3233/ADR-210315] [Reference Citation Analysis]
61 Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A 2015;112:584-9. [PMID: 25548191 DOI: 10.1073/pnas.1423136112] [Cited by in Crossref: 145] [Cited by in F6Publishing: 131] [Article Influence: 18.1] [Reference Citation Analysis]
62 Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020;14:581075. [PMID: 33192327 DOI: 10.3389/fncel.2020.581075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
63 Dempsey B, Turner AJ, Le S, Sun QJ, Bou Farah L, Allen AM, Goodchild AK, McMullan S. Recording, labeling, and transfection of single neurons in deep brain structures. Physiol Rep 2015;3:e12246. [PMID: 25602013 DOI: 10.14814/phy2.12246] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
64 Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers. 2018;4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Cited by in Crossref: 100] [Cited by in F6Publishing: 77] [Article Influence: 25.0] [Reference Citation Analysis]
65 Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten IB, Deisseroth K, Tepper JM, Bolam JP, Gerdjikov TV, Mena-Segovia J. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 2016;19:1025-33. [PMID: 27348215 DOI: 10.1038/nn.4335] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 13.3] [Reference Citation Analysis]
66 Okada K, Kobayashi Y. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task. PLoS One 2015;10:e0128147. [PMID: 26030664 DOI: 10.1371/journal.pone.0128147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
67 Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015;6:190. [PMID: 26388832 DOI: 10.3389/fneur.2015.00190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
68 Garcia-Rill E, D'Onofrio S, Mahaffey S. Bottom-up Gamma: the Pedunculopontine Nucleus and Reticular Activating System. Transl Brain Rhythm 2016;1:49-53. [PMID: 28691105 DOI: 10.15761/TBR.1000109] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
69 Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021;15:715369. [PMID: 34335196 DOI: 10.3389/fncir.2021.715369] [Reference Citation Analysis]
70 Grace KP, Horner RL. A Focal Inactivation and Computational Study of Ventrolateral Periaqueductal Gray and Deep Mesencephalic Reticular Nucleus Involvement in Sleep State Switching and Bistability. eNeuro 2020;7:ENEURO. [PMID: 33055199 DOI: 10.1523/ENEURO.0451-19.2020] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
71 Feng ZX, Dong H, Qu WM, Zhang W. Oral Delivered Dexmedetomidine Promotes and Consolidates Non-rapid Eye Movement Sleep via Sleep-Wake Regulation Systems in Mice. Front Pharmacol 2018;9:1196. [PMID: 30568589 DOI: 10.3389/fphar.2018.01196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
72 Cissé Y, Toossi H, Ishibashi M, Mainville L, Leonard CS, Adamantidis A, Jones BE. Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. eNeuro 2018;5:ENEURO. [PMID: 30225352 DOI: 10.1523/ENEURO.0270-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
73 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
74 Byrum SD, Washam CL, Tackett AJ, Garcia-Rill E, Bisagno V, Urbano FJ. Proteomic measures of gamma oscillations. Heliyon 2019;5:e02265. [PMID: 31497668 DOI: 10.1016/j.heliyon.2019.e02265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Garcia-Rill E, Tackett AJ, Byrum SD, Lan RS, Mackintosh SG, Hyde JR, Bisagno V, Urbano FJ. Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019;9:E64. [PMID: 30889866 DOI: 10.3390/brainsci9030064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
76 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
77 Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun 2016;7:10763. [PMID: 26911837 DOI: 10.1038/ncomms10763] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 11.0] [Reference Citation Analysis]
78 Wang X, Yang H, Pan L, Hao S, Wu X, Zhan L, Liu Y, Meng F, Lou H, Shen Y, Duan S, Wang H. Brain-wide Mapping of Mono-synaptic Afferents to Different Cell Types in the Laterodorsal Tegmentum. Neurosci Bull 2019;35:781-90. [PMID: 31168753 DOI: 10.1007/s12264-019-00397-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
79 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
80 Brown R, Lam AD, Gonzalez-Sulser A, Ying A, Jones M, Chou RC, Tzioras M, Jordan CY, Jedrasiak-Cape I, Hemonnot AL, Abou Jaoude M, Cole AJ, Cash SS, Saito T, Saido T, Ribchester RR, Hashemi K, Oren I. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease. eNeuro 2018;5:ENEURO. [PMID: 29780880 DOI: 10.1523/ENEURO.0426-17.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
81 Breton-Provencher V, Sur M. Active control of arousal by a locus coeruleus GABAergic circuit. Nat Neurosci 2019;22:218-28. [PMID: 30643295 DOI: 10.1038/s41593-018-0305-z] [Cited by in Crossref: 79] [Cited by in F6Publishing: 65] [Article Influence: 26.3] [Reference Citation Analysis]
82 Likhtik E, Johansen JP. Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019;22:1586-97. [PMID: 31551602 DOI: 10.1038/s41593-019-0503-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
83 Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging. J Neurosci 2017;37:11377-89. [PMID: 29061702 DOI: 10.1523/JNEUROSCI.1795-17.2017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
84 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
85 Bellesi M, Tononi G, Cirelli C, Serra PA. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle. Sleep 2016;39:143-54. [PMID: 26237776 DOI: 10.5665/sleep.5336] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
86 Luster BR, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2016;4:e12787. [PMID: 27354537 DOI: 10.14814/phy2.12787] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
87 Bayasgalan T, Stupniki S, Kovács A, Csemer A, Szentesi P, Pocsai K, Dionisio L, Spitzmaul G, Pál B. Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit. Front Cell Neurosci 2021;15:707789. [PMID: 34381336 DOI: 10.3389/fncel.2021.707789] [Reference Citation Analysis]
88 Rukhadze I, Fenik VB. Neuroanatomical Basis of State-Dependent Activity of Upper Airway Muscles. Front Neurol 2018;9:752. [PMID: 30250449 DOI: 10.3389/fneur.2018.00752] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
89 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 99] [Cited by in F6Publishing: 71] [Article Influence: 19.8] [Reference Citation Analysis]
90 Sun YG, Rupprecht V, Zhou L, Dasgupta R, Seibt F, Beierlein M. mGluR1 and mGluR5 Synergistically Control Cholinergic Synaptic Transmission in the Thalamic Reticular Nucleus. J Neurosci 2016;36:7886-96. [PMID: 27466334 DOI: 10.1523/JNEUROSCI.0409-16.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
91 Urbano FJ, Bisagno V, Garcia-Rill E. Arousal and drug abuse. Behav Brain Res 2017;333:276-81. [PMID: 28729115 DOI: 10.1016/j.bbr.2017.07.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
92 Han ME, Park SY, Oh SO. Large-scale functional brain networks for consciousness. Anat Cell Biol 2021;54:152-64. [PMID: 33967030 DOI: 10.5115/acb.20.305] [Reference Citation Analysis]
93 Wang X, Geng X, Li M, Xie J, Chen D, Han H, Meng X, Yao X, Zhang H, Gao Y, Chang H, Zhang X, Wang Y, Wang M. Electrophysiological and Neurochemical Considerations of Distinct Neuronal Populations in the Rat Pedunculopontine Nucleus and Their Responsiveness Following 6-Hydroxydopamine Lesions. Front Neurosci 2019;13:1034. [PMID: 31616246 DOI: 10.3389/fnins.2019.01034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
94 Garcia-Rill E. Bottom-up gamma and stages of waking. Med Hypotheses 2017;104:58-62. [PMID: 28673592 DOI: 10.1016/j.mehy.2017.05.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
95 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
96 Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015;9:68. [PMID: 26582977 DOI: 10.3389/fncir.2015.00068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
97 Tang Q, Brecht M, Burgalossi A. Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 2014;9:2369-81. [PMID: 25211514 DOI: 10.1038/nprot.2014.161] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
98 Lambert MØ, Ipsen TH, Kohlmeier KA. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacol Res Perspect 2017;5:e00282. [PMID: 28596834 DOI: 10.1002/prp2.282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
99 Pita-Almenar JD, Yu D, Lu HC, Beierlein M. Mechanisms underlying desynchronization of cholinergic-evoked thalamic network activity. J Neurosci 2014;34:14463-74. [PMID: 25339757 DOI: 10.1523/JNEUROSCI.2321-14.2014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
100 Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol 2014;592:4137-45. [PMID: 24973413 DOI: 10.1113/jphysiol.2014.277376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
101 Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2017;37:1352-66. [PMID: 28039375 DOI: 10.1523/JNEUROSCI.1405-16.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
102 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
103 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]