BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 2005;25:6716-20. [PMID: 16014733 DOI: 10.1523/JNEUROSCI.1887-05.2005] [Cited by in Crossref: 578] [Cited by in F6Publishing: 285] [Article Influence: 36.1] [Reference Citation Analysis]
Number Citing Articles
1 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
2 Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016;39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
3 Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 2012;109:E2635-44. [PMID: 22955882 DOI: 10.1073/pnas.1202526109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
4 Schwartz MD, Urbanski HF, Nunez AA, Smale L. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res 2011;1367:146-61. [PMID: 20971082 DOI: 10.1016/j.brainres.2010.10.058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
5 Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 2007;27:1616-30. [PMID: 17301170 DOI: 10.1523/JNEUROSCI.3498-06.2007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
6 Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro 2018;5:ENEURO. [PMID: 30225361 DOI: 10.1523/ENEURO.0228-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Henny P, Jones BE. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 2006;499:645-61. [PMID: 17029265 DOI: 10.1002/cne.21131] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 5.1] [Reference Citation Analysis]
8 Hassani OK, Krause MR, Mainville L, Cordova CA, Jones BE. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016;36:1747-57. [PMID: 26843654 DOI: 10.1523/JNEUROSCI.3903-15.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
9 Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014;34:4708-27. [PMID: 24672016 DOI: 10.1523/JNEUROSCI.2617-13.2014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 93] [Article Influence: 19.9] [Reference Citation Analysis]
10 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
11 Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D, Venner A, Lazarus M, Wellman A, Arrigoni E, Fuller PM, Saper CB. A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 2017;96:1153-1167.e5. [PMID: 29103805 DOI: 10.1016/j.neuron.2017.10.009] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
12 Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 2009;29:14423-38. [PMID: 19923277 DOI: 10.1523/JNEUROSCI.2604-09.2009] [Cited by in Crossref: 131] [Cited by in F6Publishing: 86] [Article Influence: 10.1] [Reference Citation Analysis]
13 Luppi PH, Clement O, Sapin E, Peyron C, Gervasoni D, Léger L, Fort P. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch 2012;463:43-52. [PMID: 22083642 DOI: 10.1007/s00424-011-1054-y] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 7.2] [Reference Citation Analysis]
14 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
15 Han F. Narcolepsy, orexins and respiratory regulation: Respiratory regulation in narcolepsy. Sleep and Biological Rhythms 2011;9:44-51. [DOI: 10.1111/j.1479-8425.2010.00467.x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
16 Aluisio L, Fraser I, Berdyyeva T, Tryputsen V, Shireman BT, Shoblock J, Lovenberg T, Dugovic C, Bonaventure P. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex. Front Neurosci 2014;8:107. [PMID: 24904253 DOI: 10.3389/fnins.2014.00107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
17 Equihua AC, De La Herrán-Arita AK, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 2013;4:163. [PMID: 24416019 DOI: 10.3389/fphar.2013.00163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
18 Gao XB, Wang AH. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold. Acta Physiol (Oxf) 2010;198:251-62. [PMID: 19785627 DOI: 10.1111/j.1748-1716.2009.02047.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
19 Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH. Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 2019;9:16729. [PMID: 31723155 DOI: 10.1038/s41598-019-53012-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014;34:6896-909. [PMID: 24828644 DOI: 10.1523/JNEUROSCI.5344-13.2014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
21 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
22 Schöne C, Apergis-Schoute J, Sakurai T, Adamantidis A, Burdakov D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep 2014;7:697-704. [PMID: 24767990 DOI: 10.1016/j.celrep.2014.03.055] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 12.9] [Reference Citation Analysis]
23 Perez-Leighton CE, Butterick-Peterson TA, Billington CJ, Kotz CM. Role of orexin receptors in obesity: from cellular to behavioral evidence. Int J Obes (Lond) 2013;37:167-74. [PMID: 22391883 DOI: 10.1038/ijo.2012.30] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
24 Hassani OK, Lee MG, Henny P, Jones BE. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009;29:11828-40. [PMID: 19776269 DOI: 10.1523/JNEUROSCI.1259-09.2009] [Cited by in Crossref: 126] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
25 Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2010;1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
26 Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009;29:10939-49. [PMID: 19726652 DOI: 10.1523/JNEUROSCI.1205-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 89] [Article Influence: 11.9] [Reference Citation Analysis]
27 Williams RH, Burdakov D. Hypothalamic orexins/hypocretins as regulators of breathing. Expert Rev Mol Med 2008;10:e28. [PMID: 18828950 DOI: 10.1017/S1462399408000823] [Cited by in Crossref: 59] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
28 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
29 Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2015;25:1330-47. [PMID: 24297328 DOI: 10.1093/cercor/bht326] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
30 Nishino S. Narcolepsy. Sleep Medicine Clinics 2006;1:47-61. [DOI: 10.1016/j.jsmc.2005.11.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
31 Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep 2019;42:zsz020. [PMID: 30715515 DOI: 10.1093/sleep/zsz020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
32 Schreyer S, Büttner-Ennever JA, Tang X, Mustari MJ, Horn AK. Orexin-A inputs onto visuomotor cell groups in the monkey brainstem. Neuroscience 2009;164:629-40. [PMID: 19703526 DOI: 10.1016/j.neuroscience.2009.08.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
33 Perez-Atencio L, Garcia-Aracil N, Fernandez E, Barrio LC, Barios JA. A four-state Markov model of sleep-wakefulness dynamics along light/dark cycle in mice. PLoS One 2018;13:e0189931. [PMID: 29304108 DOI: 10.1371/journal.pone.0189931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
34 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010;198:223-35. [PMID: 19723027 DOI: 10.1111/j.1748-1716.2009.02036.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
35 Berridge CW, España RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2010;1314:91-102. [PMID: 19748490 DOI: 10.1016/j.brainres.2009.09.019] [Cited by in Crossref: 115] [Cited by in F6Publishing: 115] [Article Influence: 8.8] [Reference Citation Analysis]
36 Rasmussen K, Hsu MA, Noone S, Johnson BG, Thompson LK, Hemrick-Luecke SK. The orexin-1 antagonist SB-334867 blocks antipsychotic treatment emergent catalepsy: implications for the treatment of extrapyramidal symptoms. Schizophr Bull 2007;33:1291-7. [PMID: 17660489 DOI: 10.1093/schbul/sbm087] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 0.5] [Reference Citation Analysis]
37 Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci 2013;33:9734-42. [PMID: 23739970 DOI: 10.1523/JNEUROSCI.5632-12.2013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
38 Guyenet PG, Bayliss DA, Stornetta RL, Ludwig MG, Kumar NN, Shi Y, Burke PG, Kanbar R, Basting TM, Holloway BB, Wenker IC. Proton detection and breathing regulation by the retrotrapezoid nucleus. J Physiol 2016;594:1529-51. [PMID: 26748771 DOI: 10.1113/JP271480] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
39 Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV, Tannenbaum PL, Yao L, Kuduk SD, McDonald T, Uslaner JM, Tye SJ, Coleman PJ, Winrow CJ, Renger JJ. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 2014;15:109. [PMID: 25242351 DOI: 10.1186/1471-2202-15-109] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
40 Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014;37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
41 España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845-58. [PMID: 21731134 DOI: 10.5665/SLEEP.1112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 7.4] [Reference Citation Analysis]
42 Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017;44:80-8. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
43 Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2007;117:4022-33. [PMID: 18060037 DOI: 10.1172/JCI32829] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
44 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
45 Recourt K, de Boer P, Zuiker R, Luthringer R, Kent J, van der Ark P, Van Hove I, van Gerven J, Jacobs G, van Nueten L, Drevets W. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl Psychiatry 2019;9:216. [PMID: 31481683 DOI: 10.1038/s41398-019-0553-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
46 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
47 Ishibashi M, Gumenchuk I, Miyazaki K, Inoue T, Ross WN, Leonard CS. Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization. J Neurosci 2016;36:10097-115. [PMID: 27683906 DOI: 10.1523/JNEUROSCI.0635-16.2016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
48 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016;7:11395. [PMID: 27102565 DOI: 10.1038/ncomms11395] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 14.5] [Reference Citation Analysis]
49 Bertels Z, Pradhan AAA. Emerging Treatment Targets for Migraine and Other Headaches. Headache 2019;59 Suppl 2:50-65. [PMID: 31291018 DOI: 10.1111/head.13585] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
50 Waliszewska-Prosół M, Nowakowska-Kotas M, Chojdak-Łukasiewicz J, Budrewicz S. Migraine and Sleep-An Unexplained Association? Int J Mol Sci 2021;22:5539. [PMID: 34073933 DOI: 10.3390/ijms22115539] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
52 Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 2009;106:2418-22. [PMID: 19188611 DOI: 10.1073/pnas.0811400106] [Cited by in Crossref: 289] [Cited by in F6Publishing: 267] [Article Influence: 22.2] [Reference Citation Analysis]
53 Morales Drissi N, Romu T, Landtblom AM, Szakács A, Hallböök T, Darin N, Borga M, Leinhard OD, Engström M. Unexpected Fat Distribution in Adolescents With Narcolepsy. Front Endocrinol (Lausanne) 2018;9:728. [PMID: 30574118 DOI: 10.3389/fendo.2018.00728] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Snow MB, Fraigne JJ, Thibault-Messier G, Chuen VL, Thomasian A, Horner RL, Peever J. GABA Cells in the Central Nucleus of the Amygdala Promote Cataplexy. J Neurosci 2017;37:4007-22. [PMID: 28209737 DOI: 10.1523/JNEUROSCI.4070-15.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
55 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
56 Burdakov D, Alexopoulos H. Metabolic state signalling through central hypocretin/orexin neurons. J Cell Mol Med 2005;9:795-803. [PMID: 16364191 DOI: 10.1111/j.1582-4934.2005.tb00380.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 2.3] [Reference Citation Analysis]
57 Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res 2009;1304:96-104. [PMID: 19781535 DOI: 10.1016/j.brainres.2009.09.066] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
58 Xi M, Chase MH. The injection of hypocretin-1 into the nucleus pontis oralis induces either active sleep or wakefulness depending on the behavioral state when it is administered. Sleep 2010;33:1236-43. [PMID: 20857871 DOI: 10.1093/sleep/33.9.1236] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
59 Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010;30:15585-99. [PMID: 21084614 DOI: 10.1523/JNEUROSCI.2871-10.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
60 Bettica P, Squassante L, Groeger JA, Gennery B, Winsky-Sommerer R, Dijk DJ. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 2012;37:1224-33. [PMID: 22237311 DOI: 10.1038/npp.2011.310] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
61 Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 2011;31:6518-26. [PMID: 21525292 DOI: 10.1523/JNEUROSCI.6506-10.2011] [Cited by in Crossref: 134] [Cited by in F6Publishing: 78] [Article Influence: 12.2] [Reference Citation Analysis]
62 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
63 McGregor R, Wu MF, Barber G, Ramanathan L, Siegel JM. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level. J Neurosci 2011;31:15455-67. [PMID: 22031892 DOI: 10.1523/JNEUROSCI.4017-11.2011] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
64 Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 2010;167:920-8. [PMID: 20188152 DOI: 10.1016/j.neuroscience.2010.02.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
65 Appelbaum L, Wang GX, Maro GS, Mori R, Tovin A, Marin W, Yokogawa T, Kawakami K, Smith SJ, Gothilf Y, Mignot E, Mourrain P. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Proc Natl Acad Sci U S A 2009;106:21942-7. [PMID: 19966231 DOI: 10.1073/pnas.906637106] [Cited by in Crossref: 116] [Cited by in F6Publishing: 113] [Article Influence: 8.9] [Reference Citation Analysis]
66 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
67 Cano G, Mochizuki T, Saper CB. Neural circuitry of stress-induced insomnia in rats. J Neurosci 2008;28:10167-84. [PMID: 18829974 DOI: 10.1523/JNEUROSCI.1809-08.2008] [Cited by in Crossref: 143] [Cited by in F6Publishing: 61] [Article Influence: 10.2] [Reference Citation Analysis]
68 Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y. Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol 2005;568:1003-20. [PMID: 16123113 DOI: 10.1113/jphysiol.2005.085829] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 4.4] [Reference Citation Analysis]
69 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
70 Vassalli A, Franken P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017;114:E5464-73. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 10.4] [Reference Citation Analysis]
71 Parks GS, Warrier DR, Dittrich L, Schwartz MD, Palmerston JB, Neylan TC, Morairty SR, Kilduff TS. The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems. Neuropsychopharmacology 2016;41:1144-55. [PMID: 26289145 DOI: 10.1038/npp.2015.256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
72 Wenger Combremont AL, Bayer L, Dupré A, Mühlethaler M, Serafin M. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B. Cereb Cortex 2016;26:3553-62. [PMID: 27235100 DOI: 10.1093/cercor/bhw158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
73 Barateau L, Lopez R, Dauvilliers Y. Clinical neurophysiology of CNS hypersomnias. Handb Clin Neurol 2019;161:353-67. [PMID: 31307613 DOI: 10.1016/B978-0-444-64142-7.00060-6] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
74 Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020;36:432-48. [PMID: 31782044 DOI: 10.1007/s12264-019-00447-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
75 Ajani OO, Familoni OB, Wu F, Echeme JO, Sujiang Z. Room temperature synthesis and antibacterial activity of new sulfonamides containing n,n-diethyl-substituted amido moieties. Int J Med Chem 2012;2012:367815. [PMID: 25374686 DOI: 10.1155/2012/367815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
76 Peyron C, Kilduff TS. Mapping the Hypocretin/Orexin Neuronal System: An Unexpectedly Productive Journey. J Neurosci 2017;37:2268-72. [PMID: 28250055 DOI: 10.1523/JNEUROSCI.1708-16.2016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
77 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
78 Ma X, Zubcevic L, Brüning JC, Ashcroft FM, Burdakov D. Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 2007;27:1529-33. [PMID: 17301161 DOI: 10.1523/JNEUROSCI.3583-06.2007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
79 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
80 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
81 Rihel J, Schier AF. Sites of action of sleep and wake drugs: insights from model organisms. Curr Opin Neurobiol 2013;23:831-40. [PMID: 23706898 DOI: 10.1016/j.conb.2013.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
82 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
83 Bigal ME, Hargreaves RJ. Why does sleep stop migraine? Curr Pain Headache Rep 2013;17:369. [PMID: 24037443 DOI: 10.1007/s11916-013-0369-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
84 Torterolo P, Sampogna S, Morales FR, Chase MH. MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 2006;1119:101-14. [PMID: 17027934 DOI: 10.1016/j.brainres.2006.08.100] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 3.4] [Reference Citation Analysis]
85 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
86 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
87 Revell VL, Della Monica C, Mendis J, Hassanin H, Halter RJ, Chaplan SR, Dijk DJ. Effects of the selective orexin-2 receptor antagonist JNJ-48816274 on sleep initiated in the circadian wake maintenance zone: a randomised trial. Neuropsychopharmacology 2021. [PMID: 34628482 DOI: 10.1038/s41386-021-01175-3] [Reference Citation Analysis]
88 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness: 2012 Update. Sleep Med Clin 2012;7:469-86. [PMID: 23162386 DOI: 10.1016/j.jsmc.2012.06.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
89 Watson CJ, Soto-Calderon H, Lydic R, Baghdoyan HA. Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness. Sleep 2008;31:453-64. [PMID: 18457232 DOI: 10.1093/sleep/31.4.453] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 2.9] [Reference Citation Analysis]
90 Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020;88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness. Sleep Med Clin 2010;5:513-28. [PMID: 21278831 DOI: 10.1016/j.jsmc.2010.08.003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
92 Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2009;29:15575-85. [PMID: 20007481 DOI: 10.1523/JNEUROSCI.3138-09.2009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
93 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:83-93. [PMID: 30546103 DOI: 10.1038/s41583-018-0097-x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
94 Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009;111:1001-9. [PMID: 19809293 DOI: 10.1097/ALN.0b013e3181b764b3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
95 Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014;9:e88003. [PMID: 24516577 DOI: 10.1371/journal.pone.0088003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
96 Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 2011;108:4471-6. [PMID: 21368172 DOI: 10.1073/pnas.1012456108] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 7.7] [Reference Citation Analysis]
97 Dias MB, Li A, Nattie EE. Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 2009;587:2059-67. [PMID: 19273574 DOI: 10.1113/jphysiol.2008.168260] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 5.1] [Reference Citation Analysis]
98 Tarasiuk A, Segev Y. Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats. Front Endocrinol (Lausanne) 2018;9:298. [PMID: 29915561 DOI: 10.3389/fendo.2018.00298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
99 Diniz Behn CG, Klerman EB, Mochizuki T, Lin SC, Scammell TE. Abnormal sleep/wake dynamics in orexin knockout mice. Sleep 2010;33:297-306. [PMID: 20337187 DOI: 10.1093/sleep/33.3.297] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 6.3] [Reference Citation Analysis]
100 Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017;44:110-5. [PMID: 28445807 DOI: 10.1016/j.conb.2017.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
101 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
102 Deboer T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning? Neurobiol Sleep Circadian Rhythms 2018;5:68-77. [PMID: 31236513 DOI: 10.1016/j.nbscr.2018.02.003] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
103 Etori K, Saito YC, Tsujino N, Sakurai T. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice. Front Neurosci 2014;8:8. [PMID: 24550770 DOI: 10.3389/fnins.2014.00008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
104 Schöne C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 2012;32:12437-43. [PMID: 22956835 DOI: 10.1523/JNEUROSCI.0706-12.2012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 66] [Article Influence: 9.5] [Reference Citation Analysis]
105 Methippara MM, Alam MN, Kumar S, Bashir T, Szymusiak R, McGinty D. Administration of the protein synthesis inhibitor, anisomycin, has distinct sleep-promoting effects in lateral preoptic and perifornical hypothalamic sites in rats. Neuroscience 2008;151:1-11. [PMID: 18055127 DOI: 10.1016/j.neuroscience.2007.09.051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
106 Saeed Y, Abbott SM. Circadian Disruption Associated with Alzheimer's Disease. Curr Neurol Neurosci Rep 2017;17:29. [PMID: 28324298 DOI: 10.1007/s11910-017-0745-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
107 Zeitzer JM, Buckmaster CL, Landolt HP, Lyons DM, Mignot E. Modafinil and γ-hydroxybutyrate have sleep state-specific pharmacological actions on hypocretin-1 physiology in a primate model of human sleep. Behav Pharmacol 2009;20:643-52. [PMID: 19752724 DOI: 10.1097/FBP.0b013e328331b9db] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
108 Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 2009;106:4459-64. [PMID: 19246384 DOI: 10.1073/pnas.0811126106] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
109 Volgin DV, Lu JW, Stettner GM, Mann GL, Ross RJ, Morrison AR, Kubin L. Time- and behavioral state-dependent changes in posterior hypothalamic GABAA receptors contribute to the regulation of sleep. PLoS One 2014;9:e86545. [PMID: 24466145 DOI: 10.1371/journal.pone.0086545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
110 Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015;38:1361-70. [PMID: 25845696 DOI: 10.5665/sleep.4970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
111 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
112 Mochizuki T, Klerman EB, Sakurai T, Scammell TE. Elevated body temperature during sleep in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 2006;291:R533-40. [PMID: 16556901 DOI: 10.1152/ajpregu.00887.2005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
113 Pittaras E, Colas D, Chuluun B, Allocca G, Heller C. Enhancing sleep after training improves memory in Down syndrome model mice. Sleep 2021:zsab247. [PMID: 34618890 DOI: 10.1093/sleep/zsab247] [Reference Citation Analysis]
114 Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011;2:14. [PMID: 21516258 DOI: 10.3389/fneur.2011.00014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
115 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
116 Parsons MP, Hirasawa M. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 2010;30:8061-70. [PMID: 20554857 DOI: 10.1523/JNEUROSCI.5741-09.2010] [Cited by in Crossref: 75] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
117 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
118 Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep 2016;39:369-77. [PMID: 26446125 DOI: 10.5665/sleep.5446] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
119 Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN. Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 2008;1234:66-77. [PMID: 18722360 DOI: 10.1016/j.brainres.2008.07.115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
120 Cvetkovic-Lopes V, Eggermann E, Uschakov A, Grivel J, Bayer L, Jones BE, Serafin M, Mühlethaler M. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels. PLoS One 2010;5:e15673. [PMID: 21179559 DOI: 10.1371/journal.pone.0015673] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
121 Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021;234:113370. [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
122 Beuckmann CT, Ueno T, Nakagawa M, Suzuki M, Akasofu S. Preclinical in vivo characterization of lemborexant (E2006), a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep 2019;42:zsz076. [PMID: 30923834 DOI: 10.1093/sleep/zsz076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
123 Fonseca EM, Vicente MC, Fournier S, Kinkead R, Bícego KC, Gargaglioni LH. Influence of light/dark cycle and orexins on breathing control in green iguanas (Iguana iguana). Sci Rep 2020;10:22105. [PMID: 33328521 DOI: 10.1038/s41598-020-79107-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013;7:58. [PMID: 23576957 DOI: 10.3389/fncir.2013.00058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
125 de Lecea L. Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 2012;198:15-24. [PMID: 22813967 DOI: 10.1016/B978-0-444-59489-1.00003-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
126 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
127 Godden KE, Landry JP, Slepneva N, Migues PV, Pompeiano M. Early expression of hypocretin/orexin in the chick embryo brain. PLoS One 2014;9:e106977. [PMID: 25188307 DOI: 10.1371/journal.pone.0106977] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
128 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
129 Gaykema RP, Goehler LE. Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: their potential role in sickness behavior. Brain Behav Immun 2009;23:926-30. [PMID: 19328847 DOI: 10.1016/j.bbi.2009.03.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
130 González JA, Jensen LT, Doyle SE, Miranda-Anaya M, Menaker M, Fugger L, Bayliss DA, Burdakov D. Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 2009;30:57-64. [PMID: 19508695 DOI: 10.1111/j.1460-9568.2009.06789.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
131 Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol 2020;15:183-91. [PMID: 32617440 DOI: 10.1016/j.cophys.2020.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
132 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
133 Osorio RS, Ducca EL, Wohlleber ME, Tanzi EB, Gumb T, Twumasi A, Tweardy S, Lewis C, Fischer E, Koushyk V, Cuartero-Toledo M, Sheikh MO, Pirraglia E, Zetterberg H, Blennow K, Lu SE, Mosconi L, Glodzik L, Schuetz S, Varga AW, Ayappa I, Rapoport DM, de Leon MJ. Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects. Sleep 2016;39:1253-60. [PMID: 26951396 DOI: 10.5665/sleep.5846] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
134 Scammell TE, Saper CB. Orexins: looking forward to sleep, back at addiction. Nat Med 2007;13:126-8. [PMID: 17290266 DOI: 10.1038/nm0207-126] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
135 Jones BE. Neurobiology of waking and sleeping. Handb Clin Neurol 2011;98:131-49. [PMID: 21056184 DOI: 10.1016/B978-0-444-52006-7.00009-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
136 Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017;95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
137 Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020;45:141-65. [PMID: 31234199 DOI: 10.1038/s41386-019-0446-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
138 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
139 Gozzi A, Turrini G, Piccoli L, Massagrande M, Amantini D, Antolini M, Martinelli P, Cesari N, Montanari D, Tessari M, Corsi M, Bifone A. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists. PLoS One 2011;6:e16406. [PMID: 21307957 DOI: 10.1371/journal.pone.0016406] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 6.9] [Reference Citation Analysis]
140 Mészár Z, Girard F, Saper CB, Celio MR. The lateral hypothalamic parvalbumin-immunoreactive (PV1) nucleus in rodents. J Comp Neurol 2012;520:798-815. [PMID: 22020694 DOI: 10.1002/cne.22789] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
141 Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J Physiol 2007;584:735-41. [PMID: 17884926 DOI: 10.1113/jphysiol.2007.140160] [Cited by in Crossref: 118] [Cited by in F6Publishing: 102] [Article Influence: 7.9] [Reference Citation Analysis]
142 Schwartz MD, Nguyen AT, Warrier DR, Palmerston JB, Thomas AM, Morairty SR, Neylan TC, Kilduff TS. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro. 2016;3:pii: ENEURO.0018-16.2016. [PMID: 27022631 DOI: 10.1523/eneuro.0018-16.2016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
143 Firouzabadi N, Navabzadeh N, Moghimi-Sarani E, Haghnegahdar M. Orexin/Hypocretin Type 2 Receptor (HCRTR2) Gene as a Candidate Gene in Sertraline-Associated Insomnia in Depressed Patients. Neuropsychiatr Dis Treat 2020;16:1121-8. [PMID: 32440126 DOI: 10.2147/NDT.S250141] [Reference Citation Analysis]
144 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
145 Kim SH, Goh S, Han K, Kim JW, Choi M. Numerical study of entrainment of the human circadian system and recovery by light treatment. Theor Biol Med Model 2018;15:5. [PMID: 29743086 DOI: 10.1186/s12976-018-0077-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
146 Uschakov A, Grivel J, Cvetkovic-Lopes V, Bayer L, Bernheim L, Jones BE, Mühlethaler M, Serafin M. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons. PLoS One 2011;6:e16672. [PMID: 21347440 DOI: 10.1371/journal.pone.0016672] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
147 Jiang J, Zou G, Liu J, Zhou S, Xu J, Sun H, Zou Q, Gao JH. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep. Hum Brain Mapp 2021;42:3667-79. [PMID: 33960583 DOI: 10.1002/hbm.25461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
149 Ferman TJ, Smith GE, Dickson DW, Graff-Radford NR, Lin SC, Wszolek Z, Van Gerpen JA, Uitti R, Knopman DS, Petersen RC, Parisi JE, Silber MH, Boeve BF. Abnormal daytime sleepiness in dementia with Lewy bodies compared to Alzheimer's disease using the Multiple Sleep Latency Test. Alzheimers Res Ther 2014;6:76. [PMID: 25512763 DOI: 10.1186/s13195-014-0076-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
150 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
151 Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 2007;97:837-48. [PMID: 17093123 DOI: 10.1152/jn.00873.2006] [Cited by in Crossref: 121] [Cited by in F6Publishing: 108] [Article Influence: 7.6] [Reference Citation Analysis]
152 Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol 2006;494:845-61. [PMID: 16374809 DOI: 10.1002/cne.20859] [Cited by in Crossref: 383] [Cited by in F6Publishing: 396] [Article Influence: 23.9] [Reference Citation Analysis]
153 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
154 Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, Maidment NT, Karlsson KÆ, Lapierre JL, Siegel JM. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 2013;4:1547. [PMID: 23462990 DOI: 10.1038/ncomms2461] [Cited by in Crossref: 142] [Cited by in F6Publishing: 133] [Article Influence: 15.8] [Reference Citation Analysis]
155 Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010;167:40-8. [PMID: 20109537 DOI: 10.1016/j.neuroscience.2010.01.044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
156 Lee SH, Dan Y. Neuromodulation of brain states. Neuron 2012;76:209-22. [PMID: 23040816 DOI: 10.1016/j.neuron.2012.09.012] [Cited by in Crossref: 323] [Cited by in F6Publishing: 271] [Article Influence: 32.3] [Reference Citation Analysis]
157 Yu X, Franks NP, Wisden W. Brain Clocks, Sleep, and Mood. Adv Exp Med Biol 2021;1344:71-86. [PMID: 34773227 DOI: 10.1007/978-3-030-81147-1_5] [Reference Citation Analysis]
158 Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro 2016;3:ENEURO. [PMID: 27294196 DOI: 10.1523/ENEURO.0077-16.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
159 Willie JT, Takahira H, Shibahara M, Hara J, Nomiyama M, Yanagisawa M, Sakurai T. Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 2011;43:155-61. [PMID: 20711757 DOI: 10.1007/s12031-010-9437-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
160 Zhao P, You Y, Wang Z, Zhou Y, Chai G, Yan G, Jin Z, Wang Q, Sun H. Orexin A peptidergic system: comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct. [DOI: 10.1007/s00429-021-02447-w] [Reference Citation Analysis]
161 Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 2011;6:e20360. [PMID: 21647372 DOI: 10.1371/journal.pone.0020360] [Cited by in Crossref: 152] [Cited by in F6Publishing: 157] [Article Influence: 13.8] [Reference Citation Analysis]
162 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
163 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
164 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
165 Burgess C, Lai D, Siegel J, Peever J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle. J Neurosci 2008;28:4649-60. [PMID: 18448642 DOI: 10.1523/JNEUROSCI.0334-08.2008] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
166 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
167 Teske JA, Mavanji V. Energy expenditure: role of orexin. Vitam Horm 2012;89:91-109. [PMID: 22640610 DOI: 10.1016/B978-0-12-394623-2.00006-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
168 Tortorella S, Rodrigo-Angulo ML, Núñez A, Garzón M. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle. Front Neurosci 2013;7:216. [PMID: 24311996 DOI: 10.3389/fnins.2013.00216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
169 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
170 España RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 2007;30:1417-25. [PMID: 18041476 DOI: 10.1093/sleep/30.11.1417] [Cited by in Crossref: 61] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
171 Murillo-Rodriguez E, Liu M, Blanco-Centurion C, Shiromani PJ. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the rat basal forebrain. Eur J Neurosci 2008;28:1191-8. [PMID: 18783368 DOI: 10.1111/j.1460-9568.2008.06424.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
172 Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW. REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 2006;24:2039-48. [PMID: 17067300 DOI: 10.1111/j.1460-9568.2006.05058.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 3.1] [Reference Citation Analysis]
173 Zhang GH, Liu ZL, Zhang BJ, Geng WY, Song NN, Zhou W, Cao YX, Li SQ, Huang ZL, Shen LL. Orexin A activates hypoglossal motoneurons and enhances genioglossus muscle activity in rats. Br J Pharmacol 2014;171:4233-46. [PMID: 24846570 DOI: 10.1111/bph.12784] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
174 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
175 Roch C, Bergamini G, Steiner MA, Clozel M. Nonclinical pharmacology of daridorexant: a new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology (Berl) 2021;238:2693-708. [PMID: 34415378 DOI: 10.1007/s00213-021-05954-0] [Reference Citation Analysis]
176 Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca(2+)-Dependent Resonance in LDT and PPT Cholinergic Neurons. Front Neurol 2015;6:120. [PMID: 26082752 DOI: 10.3389/fneur.2015.00120] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
177 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
178 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
179 Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010;5:e11766. [PMID: 20668680 DOI: 10.1371/journal.pone.0011766] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
180 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
181 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
182 Thakkar MM, Winston S, McCarley RW. Effect of microdialysis perfusion of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol in the perifornical hypothalamus on sleep-wakefulness: role of delta-subunit containing extrasynaptic GABAA receptors. Neuroscience 2008;153:551-5. [PMID: 18406065 DOI: 10.1016/j.neuroscience.2008.02.053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
183 Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015;9:68. [PMID: 26582977 DOI: 10.3389/fncir.2015.00068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
184 Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014;7:19-29. [PMID: 26483897 DOI: 10.1016/j.slsci.2014.07.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
185 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
186 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
187 Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 2007;27:14239-47. [PMID: 18160631 DOI: 10.1523/JNEUROSCI.3878-07.2007] [Cited by in Crossref: 186] [Cited by in F6Publishing: 78] [Article Influence: 13.3] [Reference Citation Analysis]
188 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
189 Gao HR, Zhuang QX, Zhang YX, Chen ZP, Li B, Zhang XY, Zhong YT, Wang JJ, Zhu JN. Orexin Directly Enhances the Excitability of Globus Pallidus Internus Neurons in Rat by Co-activating OX1 and OX2 Receptors. Neurosci Bull 2017;33:365-72. [PMID: 28389870 DOI: 10.1007/s12264-017-0127-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
190 Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022;375:eabh3021. [PMID: 35201886 DOI: 10.1126/science.abh3021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
191 Kuwaki T, Li A, Nattie E. State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 2010;173:223-9. [PMID: 20170755 DOI: 10.1016/j.resp.2010.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
192 Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 2009;32:1127-34. [PMID: 19750917 DOI: 10.1093/sleep/32.9.1127] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 5.0] [Reference Citation Analysis]
193 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
194 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
195 Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018;41. [PMID: 30060151 DOI: 10.1093/sleep/zsy141] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
196 Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 2009;32:181-7. [PMID: 19238805 DOI: 10.1093/sleep/32.2.181] [Cited by in Crossref: 118] [Cited by in F6Publishing: 85] [Article Influence: 9.1] [Reference Citation Analysis]
197 Hoever P, Dorffner G, Beneš H, Penzel T, Danker-Hopfe H, Barbanoj MJ, Pillar G, Saletu B, Polo O, Kunz D, Zeitlhofer J, Berg S, Partinen M, Bassetti CL, Högl B, Ebrahim IO, Holsboer-Trachsler E, Bengtsson H, Peker Y, Hemmeter UM, Chiossi E, Hajak G, Dingemanse J. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 2012;91:975-85. [PMID: 22549286 DOI: 10.1038/clpt.2011.370] [Cited by in Crossref: 93] [Cited by in F6Publishing: 88] [Article Influence: 9.3] [Reference Citation Analysis]
198 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
199 Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 2018;41. [PMID: 29986116 DOI: 10.1093/sleep/zsy130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
200 Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006;26:8092-100. [PMID: 16885223 DOI: 10.1523/JNEUROSCI.2181-06.2006] [Cited by in Crossref: 109] [Cited by in F6Publishing: 56] [Article Influence: 6.8] [Reference Citation Analysis]
201 Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007;450:420-4. [PMID: 17943086 DOI: 10.1038/nature06310] [Cited by in Crossref: 798] [Cited by in F6Publishing: 726] [Article Influence: 53.2] [Reference Citation Analysis]
202 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
203 Norozpour Y, Nasehi M, Sabouri-Khanghah V, Nami M, Vaseghi S, Zarrindast MR. The effect of alpha-2 adrenergic receptors on memory retention deficit induced by rapid eye movement sleep deprivation. Iran J Basic Med Sci 2020;23:1571-5. [PMID: 33489031 DOI: 10.22038/ijbms.2020.44891.10468] [Reference Citation Analysis]
204 Sherman D, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J. Anatomical Location of the Mesencephalic Locomotor Region and Its Possible Role in Locomotion, Posture, Cataplexy, and Parkinsonism. Front Neurol 2015;6:140. [PMID: 26157418 DOI: 10.3389/fneur.2015.00140] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 7.4] [Reference Citation Analysis]
205 Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 2015;4:e07000. [PMID: 26374985 DOI: 10.7554/eLife.07000] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 8.7] [Reference Citation Analysis]
206 Mieda M, Sakurai T. Orexin (hypocretin) receptor agonists and antagonists for treatment of sleep disorders. Rationale for development and current status. CNS Drugs 2013;27:83-90. [PMID: 23359095 DOI: 10.1007/s40263-012-0036-8] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 6.9] [Reference Citation Analysis]
207 Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 2008;1205:47-54. [PMID: 18343358 DOI: 10.1016/j.brainres.2008.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
208 Uschakov A, Gong H, McGinty D, Szymusiak R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 2007;150:104-20. [PMID: 17928156 DOI: 10.1016/j.neuroscience.2007.05.055] [Cited by in Crossref: 83] [Cited by in F6Publishing: 82] [Article Influence: 5.5] [Reference Citation Analysis]
209 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
210 Aitta-Aho T, Pappa E, Burdakov D, Apergis-Schoute J. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem 2016;136:183-8. [PMID: 27746379 DOI: 10.1016/j.nlm.2016.10.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
211 Fenik VB, Rukhadze I, Kubin L. Antagonism of alpha1-adrenergic and serotonergic receptors in the hypoglossal motor nucleus does not prevent motoneuronal activation elicited from the posterior hypothalamus. Neurosci Lett 2009;462:80-4. [PMID: 19573578 DOI: 10.1016/j.neulet.2009.06.083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
212 Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012;349:91-104. [PMID: 21939733 DOI: 10.1016/j.mce.2011.09.003] [Cited by in Crossref: 201] [Cited by in F6Publishing: 181] [Article Influence: 18.3] [Reference Citation Analysis]
213 Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep. 2016;6:36039. [PMID: 27824065 DOI: 10.1038/srep36039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
214 Luppi P, Clément O, Fort P. Brainstem structures involved in rapid eye movement sleep behavior disorder: Paradoxical sleep atonia mechanisms. Sleep and Biological Rhythms 2013;11:9-14. [DOI: 10.1111/j.1479-8425.2012.00544.x] [Reference Citation Analysis]
215 Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci 2012;32:3032-43. [PMID: 22378876 DOI: 10.1523/JNEUROSCI.5966-11.2012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
216 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
217 Civelli O. Orphan GPCRs and neuromodulation. Neuron 2012;76:12-21. [PMID: 23040803 DOI: 10.1016/j.neuron.2012.09.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
218 Ferrari LL, Agostinelli LJ, Krashes MJ, Lowell BB, Scammell TE, Arrigoni E. Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J Physiol 2016;594:1069-85. [PMID: 26613645 DOI: 10.1113/JP271657] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
219 Schöne C, Burdakov D. Glutamate and GABA as rapid effectors of hypothalamic "peptidergic" neurons. Front Behav Neurosci 2012;6:81. [PMID: 23189047 DOI: 10.3389/fnbeh.2012.00081] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
220 Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, de Lecea L. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 2005;102:19168-73. [PMID: 16357203 DOI: 10.1073/pnas.0507480102] [Cited by in Crossref: 354] [Cited by in F6Publishing: 361] [Article Influence: 20.8] [Reference Citation Analysis]
221 Behn CG, Brown EN, Scammell TE, Kopell NJ. Mathematical model of network dynamics governing mouse sleep-wake behavior. J Neurophysiol 2007;97:3828-40. [PMID: 17409167 DOI: 10.1152/jn.01184.2006] [Cited by in Crossref: 80] [Cited by in F6Publishing: 65] [Article Influence: 5.3] [Reference Citation Analysis]
222 Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020;76:300-11. [PMID: 32594802 DOI: 10.1161/HYPERTENSIONAHA.120.14521] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
223 Hsieh KC, Gvilia I, Kumar S, Uschakov A, McGinty D, Alam MN, Szymusiak R. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience 2011;188:55-67. [PMID: 21601616 DOI: 10.1016/j.neuroscience.2011.05.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
224 Dias MB, Li A, Nattie E. The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol 2010;170:96-102. [PMID: 19995618 DOI: 10.1016/j.resp.2009.12.002] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
225 Li N, Li A, Nattie E. Focal microdialysis of CO₂ in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep. Respir Physiol Neurobiol 2013;185:349-55. [PMID: 22999917 DOI: 10.1016/j.resp.2012.09.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
226 Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, Takahashi S, Tominaga M, Yamanaka A. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep 2013;36:1391-404. [PMID: 23997373 DOI: 10.5665/sleep.2972] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
227 Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 2012;7:e52525. [PMID: 23300698 DOI: 10.1371/journal.pone.0052525] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
228 Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Reference Citation Analysis]
229 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
230 Bochorishvili G, Nguyen T, Coates MB, Viar KE, Stornetta RL, Guyenet PG. The orexinergic neurons receive synaptic input from C1 cells in rats. J Comp Neurol 2014;522:3834-46. [PMID: 24984694 DOI: 10.1002/cne.23643] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
231 Nattie E, Li A. Respiration and autonomic regulation and orexin. Prog Brain Res 2012;198:25-46. [PMID: 22813968 DOI: 10.1016/B978-0-444-59489-1.00004-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
232 Stanojlovic M, Pallais Yllescas JP Jr, Vijayakumar A, Kotz C. Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson's Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol Neurobiol 2019;56:8435-50. [PMID: 31250383 DOI: 10.1007/s12035-019-01682-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
233 Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021;45:117-27. [PMID: 34052815 DOI: 10.1159/000514965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
234 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
235 Yamuy J, Fung SJ, Xi M, Chase MH. State-dependent control of lumbar motoneurons by the hypocretinergic system. Exp Neurol 2010;221:335-45. [PMID: 19962375 DOI: 10.1016/j.expneurol.2009.11.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
236 España RA. Hypocretin/orexin involvement in reward and reinforcement. Vitam Horm 2012;89:185-208. [PMID: 22640614 DOI: 10.1016/B978-0-12-394623-2.00010-X] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
237 Scharf MT, Kelz MB. Sleep and Anesthesia Interactions: A Pharmacological Appraisal. Curr Anesthesiol Rep 2013;3:1-9. [PMID: 23440738 DOI: 10.1007/s40140-012-0007-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
238 Swick TJ. Treatment paradigms for cataplexy in narcolepsy: past, present, and future. Nat Sci Sleep 2015;7:159-69. [PMID: 26715865 DOI: 10.2147/NSS.S92140] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
239 Volgin DV, Stettner GM, Kubin L. Circadian dependence of receptors that mediate wake-related excitatory drive to hypoglossal motoneurons. Respir Physiol Neurobiol 2013;188:301-7. [PMID: 23665050 DOI: 10.1016/j.resp.2013.04.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
240 Kanbar R, Stornetta RL, Guyenet PG. Sciatic nerve stimulation activates the retrotrapezoid nucleus in anesthetized rats. J Neurophysiol 2016;116:2081-92. [PMID: 27512023 DOI: 10.1152/jn.00543.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
241 Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol (1985) 2010;108:1417-24. [PMID: 20133433 DOI: 10.1152/japplphysiol.01261.2009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
242 Kostin A, Rai S, Kumar S, Szymusiak R, McGinty D, Alam MN. Nitric oxide production in the perifornical-lateral hypothalamic area and its influences on the modulation of perifornical-lateral hypothalamic area neurons. Neuroscience 2011;179:159-69. [PMID: 21277356 DOI: 10.1016/j.neuroscience.2011.01.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
243 Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2011;51:243-66. [PMID: 21034217 DOI: 10.1146/annurev-pharmtox-010510-100528] [Cited by in Crossref: 202] [Cited by in F6Publishing: 194] [Article Influence: 18.4] [Reference Citation Analysis]
244 Burke PG, Abbott SB, Coates MB, Viar KE, Stornetta RL, Guyenet PG. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 2014;190:1301-10. [PMID: 25325789 DOI: 10.1164/rccm.201407-1262OC] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
245 Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 2013;7:43. [PMID: 23730276 DOI: 10.3389/fnbeh.2013.00043] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
246 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
247 Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 2011;31:10529-39. [PMID: 21775598 DOI: 10.1523/JNEUROSCI.0784-11.2011] [Cited by in Crossref: 152] [Cited by in F6Publishing: 92] [Article Influence: 13.8] [Reference Citation Analysis]
248 Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, Liu M, Shiromani PJ. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019;39:4986-98. [PMID: 31036764 DOI: 10.1523/JNEUROSCI.0305-19.2019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
249 Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 2008;99:3090-103. [PMID: 18417630 DOI: 10.1152/jn.01243.2007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
250 Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN Biochem 2012;2012:262941. [PMID: 25969754 DOI: 10.5402/2012/262941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
251 Chen L, Mckenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, Mccarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period: Orexin type 1 receptor knockdown increases REM. European Journal of Neuroscience 2010;32:1528-36. [DOI: 10.1111/j.1460-9568.2010.07401.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
252 Allard JS, Tizabi Y, Shaffery JP, Manaye K. Effects of rapid eye movement sleep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression. Neuropeptides 2007;41:329-37. [PMID: 17590434 DOI: 10.1016/j.npep.2007.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
253 Spinieli RL, Ben Musa R, Cornelius-green J, Hasser EM, Cummings KJ. Orexin facilitates the ventilatory and behavioral responses of rats to hypoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. [DOI: 10.1152/ajpregu.00334.2021] [Reference Citation Analysis]
254 Sutton EL. Profile of suvorexant in the management of insomnia. Drug Des Devel Ther 2015;9:6035-42. [PMID: 26648692 DOI: 10.2147/DDDT.S73224] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
255 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
256 Nuñez A, Rodrigo-Angulo ML, Andrés ID, Garzón M. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis. Curr Neuropharmacol 2009;7:50-9. [PMID: 19721817 DOI: 10.2174/157015909787602797] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
257 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
258 Flores A, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci 2013;7:256. [PMID: 24391536 DOI: 10.3389/fnins.2013.00256] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
259 Bailey M, Silver R. Sex differences in circadian timing systems: implications for disease. Front Neuroendocrinol 2014;35:111-39. [PMID: 24287074 DOI: 10.1016/j.yfrne.2013.11.003] [Cited by in Crossref: 138] [Cited by in F6Publishing: 122] [Article Influence: 15.3] [Reference Citation Analysis]
260 Mosqueiro T, de Lecea L, Huerta R. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission. New J Phys 2014;16:115010. [PMID: 25598695 DOI: 10.1088/1367-2630/16/11/115010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
261 Viskaitis P, Arnold M, Garau C, Jensen LT, Fugger L, Peleg-Raibstein D, Burdakov D. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 2022:S0960-9822(22)00337-2. [PMID: 35316652 DOI: 10.1016/j.cub.2022.02.067] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
262 Yamashita A, Moriya S, Nishi R, Kaminosono J, Yamanaka A, Kuwaki T. Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Mol Brain 2021;14:104. [PMID: 34193206 DOI: 10.1186/s13041-021-00818-2] [Reference Citation Analysis]
263 Tsujino N, Tsunematsu T, Uchigashima M, Konno K, Yamanaka A, Kobayashi K, Watanabe M, Koyama Y, Sakurai T. Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One 2013;8:e70012. [PMID: 23922890 DOI: 10.1371/journal.pone.0070012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
264 Hondo M, Furutani N, Yamasaki M, Watanabe M, Sakurai T. Orexin neurons receive glycinergic innervations. PLoS One 2011;6:e25076. [PMID: 21949857 DOI: 10.1371/journal.pone.0025076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
265 Gentile TA, Simmons SJ, Barker DJ, Shaw JK, España RA, Muschamp JW. Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addict Biol 2018;23:247-55. [PMID: 28419646 DOI: 10.1111/adb.12507] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]
266 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
267 Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019;43:2164-76. [PMID: 30896835 DOI: 10.3892/ijmm.2019.4143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
268 McGregor R, Shan L, Wu MF, Siegel JM. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One 2017;12:e0178573. [PMID: 28570646 DOI: 10.1371/journal.pone.0178573] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
269 Kosse C, Burdakov D. A unifying computational framework for stability and flexibility of arousal. Front Syst Neurosci 2014;8:192. [PMID: 25368557 DOI: 10.3389/fnsys.2014.00192] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
270 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
271 Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020;5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
272 Martin T, Dauvilliers Y, Koumar OC, Bouet V, Freret T, Besnard S, Dauphin F, Bessot N. Dual orexin receptor antagonist induces changes in core body temperature in rats after exercise. Sci Rep 2019;9:18432. [PMID: 31804545 DOI: 10.1038/s41598-019-54826-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
273 Spinieli RL, Ben Musa R, Kielhofner J, Cornelius-Green J, Cummings KJ. Orexin contributes to eupnea within a critical period of postnatal development. Am J Physiol Regul Integr Comp Physiol 2021;321:R558-71. [PMID: 34405704 DOI: 10.1152/ajpregu.00156.2021] [Reference Citation Analysis]
274 Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013;29:355-65. [PMID: 23299718 DOI: 10.1007/s12264-012-1297-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
275 Weymann KB, Wood LJ, Zhu X, Marks DL. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 2014;37:84-94. [PMID: 24216337 DOI: 10.1016/j.bbi.2013.11.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
276 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
277 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
278 Henny P, Jones BE. Vesicular glutamate (VGlut), GABA (VGAT), and acetylcholine (VACht) transporters in basal forebrain axon terminals innervating the lateral hypothalamus. J Comp Neurol 2006;496:453-67. [PMID: 16572456 DOI: 10.1002/cne.20928] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
279 Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E, Wada T, Kimura I, Yanagisawa M, Sakurai T, Sasaoka T. Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Diabetologia 2008;51:657-67. [PMID: 18256806 DOI: 10.1007/s00125-008-0929-8] [Cited by in Crossref: 88] [Cited by in F6Publishing: 74] [Article Influence: 6.3] [Reference Citation Analysis]
280 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
281 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
282 Li A, Nattie E. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol 2010;588:2935-44. [PMID: 20547681 DOI: 10.1113/jphysiol.2010.191288] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 4.8] [Reference Citation Analysis]
283 Gompf HS, Aston-Jones G. Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Res 2008;1224:43-52. [PMID: 18614159 DOI: 10.1016/j.brainres.2008.05.060] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis]
284 Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 2013;16:1637-43. [PMID: 24056699 DOI: 10.1038/nn.3522] [Cited by in Crossref: 254] [Cited by in F6Publishing: 225] [Article Influence: 28.2] [Reference Citation Analysis]
285 de Lecea L, Jones BE, Boutrel B, Borgland SL, Nishino S, Bubser M, DiLeone R. Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 2006;26:10372-5. [PMID: 17035520 DOI: 10.1523/JNEUROSCI.3118-06.2006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
286 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
287 Mang GM, Dürst T, Bürki H, Imobersteg S, Abramowski D, Schuepbach E, Hoyer D, Fendt M, Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. Sleep 2012;35:1625-35. [PMID: 23204605 DOI: 10.5665/sleep.2232] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 6.1] [Reference Citation Analysis]
288 Jones BE, Hassani OK. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013;36:1769-72. [PMID: 24293746 DOI: 10.5665/sleep.3188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
289 Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci 2011;68:2499-512. [PMID: 21318261 DOI: 10.1007/s00018-011-0631-8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 7.0] [Reference Citation Analysis]
290 Rao Y, Mineur YS, Gan G, Wang AH, Liu ZW, Wu X, Suyama S, de Lecea L, Horvath TL, Picciotto MR, Gao XB. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice. J Physiol 2013;591:1951-66. [PMID: 23318871 DOI: 10.1113/jphysiol.2012.246983] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
291 Mattis J, Sehgal A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol Metab 2016;27:192-203. [PMID: 26947521 DOI: 10.1016/j.tem.2016.02.003] [Cited by in Crossref: 140] [Cited by in F6Publishing: 116] [Article Influence: 23.3] [Reference Citation Analysis]
292 Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014;15:105. [PMID: 25194917 DOI: 10.1186/1471-2202-15-105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
293 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
294 Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013;1491:68-77. [PMID: 23122879 DOI: 10.1016/j.brainres.2012.10.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
295 Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F. Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 2010;13:513-20. [PMID: 20305645 DOI: 10.1038/nn.2518] [Cited by in Crossref: 141] [Cited by in F6Publishing: 127] [Article Influence: 11.8] [Reference Citation Analysis]
296 Nishino S. Clinical and neurobiological aspects of narcolepsy. Sleep Med 2007;8:373-99. [PMID: 17470414 DOI: 10.1016/j.sleep.2007.03.008] [Cited by in Crossref: 122] [Cited by in F6Publishing: 85] [Article Influence: 8.1] [Reference Citation Analysis]
297 Seong MJ, Hong SB. Autoimmunity and Immunotherapy in Narcolepsy. Sleep Med Res 2017;8:1-7. [DOI: 10.17241/smr.2017.00052] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
298 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
299 Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajós M, Lu L, de Lecea L, De Araujo I, Picciotto MR, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. J Clin Invest 2020;130:4985-98. [PMID: 32516139 DOI: 10.1172/JCI130889] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
300 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
301 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]