BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2017;37:1352-66. [PMID: 28039375 DOI: 10.1523/JNEUROSCI.1405-16.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019;406:314-24. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
2 Sokhadze G, Campbell PW, Guido W. Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse. Eur J Neurosci 2019;49:978-89. [PMID: 29761601 DOI: 10.1111/ejn.13942] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
3 Arima Y, Yokota S, Fujitani M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci Rep 2019;9:2830. [PMID: 30808976 DOI: 10.1038/s41598-019-39063-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
4 Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018;120:12-20. [PMID: 30149182 DOI: 10.1016/j.nbd.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
5 Cissé Y, Ishibashi M, Jost J, Toossi H, Mainville L, Adamantidis A, Leonard CS, Jones BE. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. J Neurosci 2020;40:5970-89. [PMID: 32576622 DOI: 10.1523/JNEUROSCI.2875-19.2020] [Reference Citation Analysis]
6 Fink AM, Burke LA, Sharma K. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respir Physiol Neurobiol 2021;288:103653. [PMID: 33716095 DOI: 10.1016/j.resp.2021.103653] [Reference Citation Analysis]
7 Héricé C, Sakata S. Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep-Wake Cycle. Front Neurosci 2019;13:1380. [PMID: 31920528 DOI: 10.3389/fnins.2019.01380] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Inayat S, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, Mohajerani MH. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep 2020;43:zsz297. [PMID: 31825510 DOI: 10.1093/sleep/zsz297] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
9 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
10 Lau B, François C, Karachi C. Structure and function of the mesencephalic locomotor region in normal and parkinsonian primates. Current Opinion in Physiology 2019;8:121-8. [DOI: 10.1016/j.cophys.2019.01.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
11 Le TD, Inoue YH. Sesamin Activates Nrf2/Cnc-Dependent Transcription in the Absence of Oxidative Stress in Drosophila Adult Brains. Antioxidants (Basel) 2021;10:924. [PMID: 34200419 DOI: 10.3390/antiox10060924] [Reference Citation Analysis]
12 Baksa B, Kovács A, Bayasgalan T, Szentesi P, Kőszeghy Á, Szücs P, Pál B. Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus. Cell Mol Life Sci 2019;76:2799-815. [PMID: 30734834 DOI: 10.1007/s00018-019-03025-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2021. [PMID: 34510281 DOI: 10.1007/s00429-021-02375-9] [Reference Citation Analysis]
14 Anaclet C, Fuller PM. Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 2017;44:139-43. [PMID: 28500870 DOI: 10.1016/j.conb.2017.04.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
15 Chang SJ, Cajigas I, Opris I, Guest JD, Noga BR. Dissecting Brainstem Locomotor Circuits: Converging Evidence for Cuneiform Nucleus Stimulation. Front Syst Neurosci 2020;14:64. [PMID: 32973468 DOI: 10.3389/fnsys.2020.00064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Rukhadze I, Fenik VB. Neuroanatomical Basis of State-Dependent Activity of Upper Airway Muscles. Front Neurol 2018;9:752. [PMID: 30250449 DOI: 10.3389/fneur.2018.00752] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
17 Bayasgalan T, Stupniki S, Kovács A, Csemer A, Szentesi P, Pocsai K, Dionisio L, Spitzmaul G, Pál B. Alteration of Mesopontine Cholinergic Function by the Lack of KCNQ4 Subunit. Front Cell Neurosci 2021;15:707789. [PMID: 34381336 DOI: 10.3389/fncel.2021.707789] [Reference Citation Analysis]
18 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
19 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019;24:1284-95. [PMID: 30377299 DOI: 10.1038/s41380-018-0291-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
20 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Ma T, Zhang H, Xu ZP, Lu Y, Fu Q, Wang W, Li GH, Wang YY, Yang YT, Mi WD. Activation of brain-derived neurotrophic factor signaling in the basal forebrain reverses acute sleep deprivation-induced fear memory impairments. Brain Behav 2020;10:e01592. [PMID: 32157827 DOI: 10.1002/brb3.1592] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
23 Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019;13:69. [PMID: 31798423 DOI: 10.3389/fnsys.2019.00069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
24 Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130:925-40. [PMID: 30981899 DOI: 10.1016/j.clinph.2019.03.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 7.7] [Reference Citation Analysis]
25 Vanini G, Bassana M, Mast M, Mondino A, Cerda I, Phyle M, Chen V, Colmenero AV, Hambrecht-Wiedbusch VS, Mashour GA. Activation of Preoptic GABAergic or Glutamatergic Neurons Modulates Sleep-Wake Architecture, but Not Anesthetic State Transitions. Curr Biol 2020;30:779-787.e4. [PMID: 32084397 DOI: 10.1016/j.cub.2019.12.063] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
26 Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019;10:1414. [PMID: 31827439 DOI: 10.3389/fphar.2019.01414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
27 Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol 2020;15:143-51. [PMID: 32647777 DOI: 10.1016/j.cophys.2019.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
28 Perreault MC, Giorgi A. Diversity of reticulospinal systems in mammals. Curr Opin Physiol 2019;8:161-9. [PMID: 31763514 DOI: 10.1016/j.cophys.2019.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
29 Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. Combined resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined ISO/MED anesthesia. Neuroimage 2021;245:118626. [PMID: 34637903 DOI: 10.1016/j.neuroimage.2021.118626] [Reference Citation Analysis]
30 Huerta-Ocampo I, Dautan D, Gut NK, Khan B, Mena-Segovia J. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci Rep 2021;11:9055. [PMID: 33907215 DOI: 10.1038/s41598-021-88374-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat Commun 2018;9:354. [PMID: 29367602 DOI: 10.1038/s41467-017-02765-w] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 15.3] [Reference Citation Analysis]
32 Kroeger D, Absi G, Gagliardi C, Bandaru SS, Madara JC, Ferrari LL, Arrigoni E, Münzberg H, Scammell TE, Saper CB, Vetrivelan R. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat Commun 2018;9:4129. [PMID: 30297727 DOI: 10.1038/s41467-018-06590-7] [Cited by in Crossref: 82] [Cited by in F6Publishing: 65] [Article Influence: 20.5] [Reference Citation Analysis]
33 Zhang Y, Vakhtin AA, Jennings JS, Massaband P, Wintermark M, Craig PL, Ashford JW, Clark JD, Furst AJ. Diffusion tensor tractography of brainstem fibers and its application in pain. PLoS One 2020;15:e0213952. [PMID: 32069284 DOI: 10.1371/journal.pone.0213952] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021;3:312-41. [PMID: 34207633 DOI: 10.3390/clockssleep3020020] [Reference Citation Analysis]
35 Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK, Walsh CM, Rajana H, Oh J, Theofilas P, Seeley WW, Miller BL, Neylan TC, Heinsen H, Grinberg LT. Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study. J Neuropathol Exp Neurol 2018;77:149-61. [PMID: 29304218 DOI: 10.1093/jnen/nlx113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
36 Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022;16:884785. [DOI: 10.3389/fncir.2022.884785] [Reference Citation Analysis]
37 Yang SR, Hu ZZ, Luo YJ, Zhao YN, Sun HX, Yin D, Wang CY, Yan YD, Wang DR, Yuan XS, Ye CB, Guo W, Qu WM, Cherasse Y, Lazarus M, Ding YQ, Huang ZL. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biol 2018;16:e2002909. [PMID: 29652889 DOI: 10.1371/journal.pbio.2002909] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
38 Silkis IG, Markevich VA. Possible Mechanisms of the Influence of the Supramillary Nucleus on the Functioning of the Dentate Gyrus and the CA2 Field of the Hippocamsus (Role of Disinhibition). Neurochem J 2020;14:375-83. [DOI: 10.1134/s181971242004011x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
39 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022;23:4599. [PMID: 35562990 DOI: 10.3390/ijms23094599] [Reference Citation Analysis]
41 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
42 Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci Adv 2020;6:eabc2487. [PMID: 33177086 DOI: 10.1126/sciadv.abc2487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci 2018;21:974-84. [PMID: 29892048 DOI: 10.1038/s41593-018-0164-7] [Cited by in Crossref: 77] [Cited by in F6Publishing: 59] [Article Influence: 19.3] [Reference Citation Analysis]
44 Chen K, Ge X, Dai Y. Cholinergic modulation of persistent inward currents is mediated by activating muscarinic receptors of serotonergic neurons in the brainstem of ePet-EYFP mice. Exp Brain Res 2022;240:1177-89. [PMID: 35166863 DOI: 10.1007/s00221-022-06322-w] [Reference Citation Analysis]
45 Mizrahi-Kliger AD, Feldmann LK, Kühn AA, Bergman H. Etiologies of insomnia in Parkinson's disease - Lessons from human studies and animal models. Exp Neurol 2022;350:113976. [PMID: 35026228 DOI: 10.1016/j.expneurol.2022.113976] [Reference Citation Analysis]
46 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
47 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
48 Todd WD. Potential Pathways for Circadian Dysfunction and Sundowning-Related Behavioral Aggression in Alzheimer's Disease and Related Dementias. Front Neurosci 2020;14:910. [PMID: 33013301 DOI: 10.3389/fnins.2020.00910] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Luquin E, Huerta I, Aymerich MS, Mengual E. Stereological Estimates of Glutamatergic, GABAergic, and Cholinergic Neurons in the Pedunculopontine and Laterodorsal Tegmental Nuclei in the Rat. Front Neuroanat 2018;12:34. [PMID: 29867374 DOI: 10.3389/fnana.2018.00034] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
50 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
51 Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017;11:581. [PMID: 29093660 DOI: 10.3389/fnins.2017.00581] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
52 Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022;13:504. [PMID: 35082287 DOI: 10.1038/s41467-022-28075-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Dong H, Chen ZK, Guo H, Yuan XS, Liu CW, Qu WM, Huang ZL. Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice. Curr Biol 2022:S0960-9822(21)01702-4. [PMID: 35021048 DOI: 10.1016/j.cub.2021.12.026] [Reference Citation Analysis]
54 Sokhadze G, Whyland KL, Bickford ME, Guido W. The organization of cholinergic projections in the visual thalamus of the mouse. J Comp Neurol 2021. [PMID: 34448209 DOI: 10.1002/cne.25235] [Reference Citation Analysis]
55 Fenik VB, Rukhadze I. Activity of Pontine A7 Noradrenergic Neurons is suppressed during REM sleep. J Appl Physiol (1985) 2022. [PMID: 35616303 DOI: 10.1152/japplphysiol.00771.2021] [Reference Citation Analysis]
56 Beebe NL, Zhang C, Burger RM, Schofield BR. Multiple Sources of Cholinergic Input to the Superior Olivary Complex. Front Neural Circuits 2021;15:715369. [PMID: 34335196 DOI: 10.3389/fncir.2021.715369] [Reference Citation Analysis]
57 Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022;16:877054. [DOI: 10.3389/fnins.2022.877054] [Reference Citation Analysis]
58 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
60 Cissé Y, Toossi H, Ishibashi M, Mainville L, Leonard CS, Adamantidis A, Jones BE. Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice. eNeuro 2018;5:ENEURO. [PMID: 30225352 DOI: 10.1523/ENEURO.0270-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
61 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
62 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]