BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci 2012;32:12961-72. [PMID: 22973020 DOI: 10.1523/JNEUROSCI.1284-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 39] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
2 Chen S, Chiu CN, McArthur KL, Fetcho JR, Prober DA. TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 2016;13:147-50. [PMID: 26657556 DOI: 10.1038/nmeth.3691] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
3 Chen A, Singh C, Oikonomou G, Prober DA. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017;4:ENEURO. [PMID: 28275716 DOI: 10.1523/ENEURO.0286-16.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
4 Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016;10:540. [PMID: 27965528 DOI: 10.3389/fnins.2016.00540] [Cited by in Crossref: 134] [Cited by in F6Publishing: 112] [Article Influence: 22.3] [Reference Citation Analysis]
5 Dvir H, Elbaz I, Havlin S, Appelbaum L, Ivanov PC, Bartsch RP. Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome. Sci Adv 2018;4:eaar6277. [PMID: 29707639 DOI: 10.1126/sciadv.aar6277] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
6 Nishimura Y, Okabe S, Sasagawa S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 2015;6:257. [PMID: 26578964 DOI: 10.3389/fphar.2015.00257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
7 Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020;96:109728. [PMID: 31394141 DOI: 10.1016/j.pnpbp.2019.109728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
8 Mirat O, Sternberg JR, Severi KE, Wyart C. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front Neural Circuits 2013;7:107. [PMID: 23781175 DOI: 10.3389/fncir.2013.00107] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 6.8] [Reference Citation Analysis]
9 Vatine GD, Zada D, Lerer-Goldshtein T, Tovin A, Malkinson G, Yaniv K, Appelbaum L. Zebrafish as a model for monocarboxyl transporter 8-deficiency. J Biol Chem 2013;288:169-80. [PMID: 23161551 DOI: 10.1074/jbc.M112.413831] [Cited by in Crossref: 52] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
10 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
11 Rihel J, Schier AF. Sites of action of sleep and wake drugs: insights from model organisms. Curr Opin Neurobiol 2013;23:831-40. [PMID: 23706898 DOI: 10.1016/j.conb.2013.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
12 Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014;34:3607-21. [PMID: 24599460 DOI: 10.1523/JNEUROSCI.3388-13.2014] [Cited by in Crossref: 81] [Cited by in F6Publishing: 34] [Article Influence: 10.1] [Reference Citation Analysis]
13 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
14 Zada D, Tovin A, Lerer-Goldshtein T, Appelbaum L. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish. Dis Model Mech 2016;9:1339-48. [PMID: 27664134 DOI: 10.1242/dmm.027227] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 5.3] [Reference Citation Analysis]
15 Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013;7:58. [PMID: 23576957 DOI: 10.3389/fncir.2013.00058] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
16 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
17 Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. Elife 2018;7:e32637. [PMID: 29405117 DOI: 10.7554/eLife.32637] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
18 Merikangas KR, Swendsen J, Hickie IB, Cui L, Shou H, Merikangas AK, Zhang J, Lamers F, Crainiceanu C, Volkow ND, Zipunnikov V. Real-time Mobile Monitoring of the Dynamic Associations Among Motor Activity, Energy, Mood, and Sleep in Adults With Bipolar Disorder. JAMA Psychiatry 2019;76:190-8. [PMID: 30540352 DOI: 10.1001/jamapsychiatry.2018.3546] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 30.5] [Reference Citation Analysis]
19 Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014;10:e1004615. [PMID: 25255244 DOI: 10.1371/journal.pgen.1004615] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
20 Li SB, Jones JR, de Lecea L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 2016;18:7. [PMID: 26733323 DOI: 10.1007/s11920-015-0639-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
21 Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. Elife 2020;9:e54491. [PMID: 33337320 DOI: 10.7554/eLife.54491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liu J, Merkle FT, Gandhi AV, Gagnon JA, Woods IG, Chiu CN, Shimogori T, Schier AF, Prober DA. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 2015;142:1113-24. [PMID: 25725064 DOI: 10.1242/dev.117424] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
23 Thorn RJ, Dombroski A, Eller K, Dominguez-Gonzalez TM, Clift DE, Baek P, Seto RJ, Kahn ES, Tucker SK, Colwill RM, Sello JK, Creton R. Analysis of vertebrate vision in a 384-well imaging system. Sci Rep 2019;9:13989. [PMID: 31562366 DOI: 10.1038/s41598-019-50372-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Lerer-Goldshtein T, Appelbaum L. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. Elife 2015;4:e08638. [PMID: 26426478 DOI: 10.7554/eLife.08638] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
25 Chowdhury K, Lin S, Lai S. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022;10:783818. [DOI: 10.3389/fevo.2022.783818] [Reference Citation Analysis]
26 Elbaz I, Foulkes NS, Gothilf Y, Appelbaum L. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish. Front Neural Circuits 2013;7:9. [PMID: 23378829 DOI: 10.3389/fncir.2013.00009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
27 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
28 Zhou Y, Cattley RT, Cario CL, Bai Q, Burton EA. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications. Nat Protoc 2014;9:1533-48. [PMID: 24901738 DOI: 10.1038/nprot.2014.094] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
29 Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022;15:873520. [DOI: 10.3389/fnmol.2022.873520] [Reference Citation Analysis]
30 Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021:S1097-2765(21)00933-3. [PMID: 34798058 DOI: 10.1016/j.molcel.2021.10.026] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
31 Sterling ME, Karatayev O, Chang GQ, Algava DB, Leibowitz SF. Model of voluntary ethanol intake in zebrafish: effect on behavior and hypothalamic orexigenic peptides. Behav Brain Res 2015;278:29-39. [PMID: 25257106 DOI: 10.1016/j.bbr.2014.09.024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
32 Schnytzer Y, Simon-Blecher N, Li J, Waldman Ben-Asher H, Salmon-Divon M, Achituv Y, Hughes ME, Levy O. Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci Rep 2018;8:4917. [PMID: 29559663 DOI: 10.1038/s41598-018-23167-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
33 Planchart A, Mattingly CJ, Allen D, Ceger P, Casey W, Hinton D, Kanungo J, Kullman SW, Tal T, Bondesson M, Burgess SM, Sullivan C, Kim C, Behl M, Padilla S, Reif DM, Tanguay RL, Hamm J. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX 2016;33:435-52. [PMID: 27328013 DOI: 10.14573/altex.1601281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
34 Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C, Zilberberg A, Lerer-Goldshtein T, Efroni S, Levanon EY, Appelbaum L. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish. PLoS Genet 2015;11:e1005702. [PMID: 26637167 DOI: 10.1371/journal.pgen.1005702] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 6.1] [Reference Citation Analysis]
35 Soya S, Sakurai T. Evolution of Orexin Neuropeptide System: Structure and Function. Front Neurosci 2020;14:691. [PMID: 32754010 DOI: 10.3389/fnins.2020.00691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
36 Ghosh M, Rihel J. Hierarchical Compression Reveals Sub-Second to Day-Long Structure in Larval Zebrafish Behavior. eNeuro 2020;7:ENEURO. [PMID: 32241874 DOI: 10.1523/ENEURO.0408-19.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles BJ, Montz CJ, Chakravarthy S, Zimmerman S, Salehi-Ashtiani K, Vidal M, Schier AF, Prober DA. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron 2016;89:842-56. [PMID: 26889812 DOI: 10.1016/j.neuron.2016.01.007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 9.8] [Reference Citation Analysis]
38 Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 2016;12:e1006445. [PMID: 27870848 DOI: 10.1371/journal.pgen.1006445] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
39 Koesema E, Kodadek T. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line. PLoS One 2017;12:e0188082. [PMID: 29145494 DOI: 10.1371/journal.pone.0188082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
40 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
41 Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 2019;10:895. [PMID: 30837464 DOI: 10.1038/s41467-019-08806-w] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 15.7] [Reference Citation Analysis]
42 Thorn RJ, Clift DE, Ojo O, Colwill RM, Creton R. The loss and recovery of vertebrate vision examined in microplates. PLoS One 2017;12:e0183414. [PMID: 28817700 DOI: 10.1371/journal.pone.0183414] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]