BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassani OK, Lee MG, Henny P, Jones BE. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009;29:11828-40. [PMID: 19776269 DOI: 10.1523/JNEUROSCI.1259-09.2009] [Cited by in Crossref: 126] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014;34:4708-27. [PMID: 24672016 DOI: 10.1523/JNEUROSCI.2617-13.2014] [Cited by in Crossref: 159] [Cited by in F6Publishing: 93] [Article Influence: 19.9] [Reference Citation Analysis]
2 Bianchi MT, Clark AG, Fisher JL. The wake-promoting transmitter histamine preferentially enhances α-4 subunit-containing GABAA receptors. Neuropharmacology 2011;61:747-52. [PMID: 21640733 DOI: 10.1016/j.neuropharm.2011.05.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
3 Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 2015;6:8744. [PMID: 26524973 DOI: 10.1038/ncomms9744] [Cited by in Crossref: 146] [Cited by in F6Publishing: 139] [Article Influence: 20.9] [Reference Citation Analysis]
4 Alitto HJ, Dan Y. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 2012;6:79. [PMID: 23316142 DOI: 10.3389/fnsys.2012.00079] [Cited by in Crossref: 51] [Cited by in F6Publishing: 79] [Article Influence: 5.7] [Reference Citation Analysis]
5 Saravanapandian V, Nadkarni D, Hsu SH, Hussain SA, Maski K, Golshani P, Colwell CS, Balasubramanian S, Dixon A, Geschwind DH, Jeste SS. Abnormal sleep physiology in children with 15q11.2-13.1 duplication (Dup15q) syndrome. Mol Autism 2021;12:54. [PMID: 34344470 DOI: 10.1186/s13229-021-00460-8] [Reference Citation Analysis]
6 Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL. Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits. Neuron 2018;97:611-625.e5. [PMID: 29420933 DOI: 10.1016/j.neuron.2018.01.037] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 17.0] [Reference Citation Analysis]
7 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
8 Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. J Neurosci 2018;38:5168-81. [PMID: 29735555 DOI: 10.1523/JNEUROSCI.2955-17.2018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Sheroziya M, Timofeev I. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation. J Neurosci 2015;35:13006-19. [PMID: 26400932 DOI: 10.1523/JNEUROSCI.1359-15.2015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
10 Shang Y, Donelson NC, Vecsey CG, Guo F, Rosbash M, Griffith LC. Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 2013;80:171-83. [PMID: 24094110 DOI: 10.1016/j.neuron.2013.07.029] [Cited by in Crossref: 85] [Cited by in F6Publishing: 73] [Article Influence: 9.4] [Reference Citation Analysis]
11 España RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep 2011;34:845-58. [PMID: 21731134 DOI: 10.5665/SLEEP.1112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 63] [Article Influence: 7.4] [Reference Citation Analysis]
12 Tingley D, Alexander AS, Quinn LK, Chiba AA, Nitz DA. Cell assemblies of the basal forebrain. J Neurosci 2015;35:2992-3000. [PMID: 25698736 DOI: 10.1523/JNEUROSCI.4432-14.2015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013;6:59. [PMID: 24370235 DOI: 10.1186/1756-6606-6-59] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
14 Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018;222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Cissé Y, Ishibashi M, Jost J, Toossi H, Mainville L, Adamantidis A, Leonard CS, Jones BE. Discharge and Role of GABA Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recordings in Mice. J Neurosci 2020;40:5970-89. [PMID: 32576622 DOI: 10.1523/JNEUROSCI.2875-19.2020] [Reference Citation Analysis]
16 Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y. Basal forebrain circuit for sleep-wake control. Nat Neurosci 2015;18:1641-7. [PMID: 26457552 DOI: 10.1038/nn.4143] [Cited by in Crossref: 234] [Cited by in F6Publishing: 212] [Article Influence: 33.4] [Reference Citation Analysis]
17 Tingley D, Alexander AS, Kolbu S, de Sa VR, Chiba AA, Nitz DA. Task-phase-specific dynamics of basal forebrain neuronal ensembles. Front Syst Neurosci 2014;8:174. [PMID: 25309352 DOI: 10.3389/fnsys.2014.00174] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
18 Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 2015;112:3535-40. [PMID: 25733878 DOI: 10.1073/pnas.1413625112] [Cited by in Crossref: 151] [Cited by in F6Publishing: 133] [Article Influence: 21.6] [Reference Citation Analysis]
19 Yang C, Thankachan S, McCarley RW, Brown RE. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 2017;44:159-66. [PMID: 28538168 DOI: 10.1016/j.conb.2017.05.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
20 Vanini G, Lydic R, Baghdoyan HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 2012;35:1325-34. [PMID: 23024430 DOI: 10.5665/sleep.2106] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
21 Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 2015;25:118-37. [PMID: 23964066 DOI: 10.1093/cercor/bht210] [Cited by in Crossref: 159] [Cited by in F6Publishing: 145] [Article Influence: 17.7] [Reference Citation Analysis]
22 Devore S, Pender-Morris N, Dean O, Smith D, Linster C. Basal forebrain dynamics during nonassociative and associative olfactory learning. J Neurophysiol 2016;115:423-33. [PMID: 26561601 DOI: 10.1152/jn.00572.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
23 Bishir M, Bhat A, Essa MM, Ekpo O, Ihunwo AO, Veeraraghavan VP, Mohan SK, Mahalakshmi AM, Ray B, Tuladhar S, Chang S, Chidambaram SB, Sakharkar MK, Guillemin GJ, Qoronfleh MW, Ojcius DM. Sleep Deprivation and Neurological Disorders. Biomed Res Int 2020;2020:5764017. [PMID: 33381558 DOI: 10.1155/2020/5764017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
24 Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 2013;4:77. [PMID: 23801984 DOI: 10.3389/fneur.2013.00077] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
25 Pafundo DE, Nicholas MA, Zhang R, Kuhlman SJ. Top-Down-Mediated Facilitation in the Visual Cortex Is Gated by Subcortical Neuromodulation. J Neurosci 2016;36:2904-14. [PMID: 26961946 DOI: 10.1523/JNEUROSCI.2909-15.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 5.2] [Reference Citation Analysis]
26 Unal CT, Golowasch JP, Zaborszky L. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Front Behav Neurosci 2012;6:21. [PMID: 22586380 DOI: 10.3389/fnbeh.2012.00021] [Cited by in Crossref: 42] [Cited by in F6Publishing: 51] [Article Influence: 4.2] [Reference Citation Analysis]
27 Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci 2016;36:2057-67. [PMID: 26865627 DOI: 10.1523/JNEUROSCI.3318-15.2016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
28 Motelow JE, Li W, Zhan Q, Mishra AM, Sachdev RN, Liu G, Gummadavelli A, Zayyad Z, Lee HS, Chu V, Andrews JP, Englot DJ, Herman P, Sanganahalli BG, Hyder F, Blumenfeld H. Decreased subcortical cholinergic arousal in focal seizures. Neuron 2015;85:561-72. [PMID: 25654258 DOI: 10.1016/j.neuron.2014.12.058] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 10.4] [Reference Citation Analysis]
29 Shi YF, Han Y, Su YT, Yang JH, Yu YQ. Silencing of Cholinergic Basal Forebrain Neurons Using Archaerhodopsin Prolongs Slow-Wave Sleep in Mice. PLoS One 2015;10:e0130130. [PMID: 26151909 DOI: 10.1371/journal.pone.0130130] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
30 Lyamin OI, Lapierre JL, Kosenko PO, Kodama T, Bhagwandin A, Korneva SM, Peever JH, Mukhametov LM, Siegel JM. Monoamine Release during Unihemispheric Sleep and Unihemispheric Waking in the Fur Seal. Sleep 2016;39:625-36. [PMID: 26715233 DOI: 10.5665/sleep.5540] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
31 Hermanstyne TO, Subedi K, Le WW, Hoffman GE, Meredith AL, Mong JA, Misonou H. Kv2.2: a novel molecular target to study the role of basal forebrain GABAergic neurons in the sleep-wake cycle. Sleep 2013;36:1839-48. [PMID: 24293758 DOI: 10.5665/sleep.3212] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
32 Zhang K, Pan J, Yu Y. Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings. Biomolecules 2022;12:898. [DOI: 10.3390/biom12070898] [Reference Citation Analysis]
33 McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, Yanagawa Y, McCarley RW, Brown RE. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol 2013;521:1225-50. [PMID: 23254904 DOI: 10.1002/cne.23290] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
34 Kaifosh P, Lovett-Barron M, Turi GF, Reardon TR, Losonczy A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat Neurosci 2013;16:1182-4. [PMID: 23912949 DOI: 10.1038/nn.3482] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 11.0] [Reference Citation Analysis]
35 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition. J Neurosci 2015;35:13896-903. [PMID: 26468190 DOI: 10.1523/JNEUROSCI.2590-15.2015] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
37 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
38 Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2021;26:71-93. [PMID: 33054668 DOI: 10.1080/1357650X.2020.1828446] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lőrincz ML, Gunner D, Bao Y, Connelly WM, Isaac JT, Hughes SW, Crunelli V. A distinct class of slow (~0.2-2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex. J Neurosci 2015;35:5442-58. [PMID: 25855163 DOI: 10.1523/JNEUROSCI.3603-14.2015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
40 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
41 Luo T, Leung LS. Endogenous histamine facilitates long-term potentiation in the hippocampus during walking. J Neurosci 2010;30:7845-52. [PMID: 20534833 DOI: 10.1523/JNEUROSCI.1127-10.2010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
42 Hermanstyne TO, Kihira Y, Misono K, Deitchler A, Yanagawa Y, Misonou H. Immunolocalization of the voltage-gated potassium channel Kv2.2 in GABAergic neurons in the basal forebrain of rats and mice. J Comp Neurol 2010;518:4298-310. [PMID: 20853508 DOI: 10.1002/cne.22457] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
43 Hawryluk JM, Ferrari LL, Keating SA, Arrigoni E. Adenosine inhibits glutamatergic input to basal forebrain cholinergic neurons. J Neurophysiol 2012;107:2769-81. [PMID: 22357797 DOI: 10.1152/jn.00528.2011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
44 Sharma R, Engemann S, Sahota P, Thakkar MM. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence. J Neurochem 2010;115:782-94. [PMID: 20807311 DOI: 10.1111/j.1471-4159.2010.06980.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 4.1] [Reference Citation Analysis]
45 Nikonova EV, Gilliland JD, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017;40. [PMID: 28419375 DOI: 10.1093/sleep/zsx059] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
46 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
47 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
48 Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014;8:385. [PMID: 25452715 DOI: 10.3389/fncel.2014.00385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
49 Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep 2014;37:1941-51. [PMID: 25325504 DOI: 10.5665/sleep.4246] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 9.5] [Reference Citation Analysis]
50 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
51 Chen L, Yin D, Wang TX, Guo W, Dong H, Xu Q, Luo YJ, Cherasse Y, Lazarus M, Qiu ZL, Lu J, Qu WM, Huang ZL. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice. Neuropsychopharmacology 2016;41:2133-46. [PMID: 26797244 DOI: 10.1038/npp.2016.13] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 10.8] [Reference Citation Analysis]
52 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
53 Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN Biochem 2012;2012:262941. [PMID: 25969754 DOI: 10.5402/2012/262941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
54 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
55 Yuan M, Meyer T, Benkowitz C, Savanthrapadian S, Ansel-Bollepalli L, Foggetti A, Wulff P, Alcami P, Elgueta C, Bartos M. Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. Elife 2017;6:e21105. [PMID: 28368242 DOI: 10.7554/eLife.21105] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
56 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
57 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
58 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
59 Poe GR. Sleep Is for Forgetting. J Neurosci 2017;37:464-73. [PMID: 28100731 DOI: 10.1523/JNEUROSCI.0820-16.2017] [Cited by in Crossref: 55] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
60 Sandhu MRS, Dhaher R, Gruenbaum SE, Raaisa R, Spencer DD, Pavlova MK, Zaveri HP, Eid T. Circadian-Like Rhythmicity of Extracellular Brain Glutamate in Epilepsy. Front Neurol 2020;11:398. [PMID: 32499751 DOI: 10.3389/fneur.2020.00398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
62 Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol 2014;592:4137-45. [PMID: 24973413 DOI: 10.1113/jphysiol.2014.277376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
63 Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 2017;352:249-61. [PMID: 28411158 DOI: 10.1016/j.neuroscience.2017.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
64 Miyamoto H, Nakamaru-Ogiso E, Hamada K, Hensch TK. Serotonergic integration of circadian clock and ultradian sleep-wake cycles. J Neurosci 2012;32:14794-803. [PMID: 23077063 DOI: 10.1523/JNEUROSCI.0793-12.2012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
65 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
66 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
67 Kilduff TS, Cauli B, Gerashchenko D. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci 2011;34:10-9. [PMID: 21030095 DOI: 10.1016/j.tins.2010.09.005] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 4.3] [Reference Citation Analysis]
68 Hangya B, Ranade SP, Lorenc M, Kepecs A. Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback. Cell 2015;162:1155-68. [PMID: 26317475 DOI: 10.1016/j.cell.2015.07.057] [Cited by in Crossref: 219] [Cited by in F6Publishing: 174] [Article Influence: 31.3] [Reference Citation Analysis]
69 Sun YG, Rupprecht V, Zhou L, Dasgupta R, Seibt F, Beierlein M. mGluR1 and mGluR5 Synergistically Control Cholinergic Synaptic Transmission in the Thalamic Reticular Nucleus. J Neurosci 2016;36:7886-96. [PMID: 27466334 DOI: 10.1523/JNEUROSCI.0409-16.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Garrity AG, Botta S, Lazar SB, Swor E, Vanini G, Baghdoyan HA, Lydic R. Dexmedetomidine-induced sedation does not mimic the neurobehavioral phenotypes of sleep in Sprague Dawley rat. Sleep 2015;38:73-84. [PMID: 25325438 DOI: 10.5665/sleep.4328] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
71 Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R. Sleep and brain energy levels: ATP changes during sleep. J Neurosci 2010;30:9007-16. [PMID: 20592221 DOI: 10.1523/JNEUROSCI.1423-10.2010] [Cited by in Crossref: 149] [Cited by in F6Publishing: 90] [Article Influence: 12.4] [Reference Citation Analysis]
72 Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526-1533. [PMID: 21037585 DOI: 10.1038/nn.2682] [Cited by in Crossref: 487] [Cited by in F6Publishing: 444] [Article Influence: 40.6] [Reference Citation Analysis]
73 Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 2018;41. [PMID: 29986116 DOI: 10.1093/sleep/zsy130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
74 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
75 Unal G, Joshi A, Viney TJ, Kis V, Somogyi P. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J Neurosci 2015;35:15812-26. [PMID: 26631464 DOI: 10.1523/JNEUROSCI.2639-15.2015] [Cited by in Crossref: 71] [Cited by in F6Publishing: 44] [Article Influence: 11.8] [Reference Citation Analysis]
76 Hedrick T, Waters J. Physiological properties of cholinergic and non-cholinergic magnocellular neurons in acute slices from adult mouse nucleus basalis. PLoS One 2010;5:e11046. [PMID: 20548784 DOI: 10.1371/journal.pone.0011046] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
77 Lara-Vásquez A, Espinosa N, Durán E, Stockle M, Fuentealba P. Midline thalamic neurons are differentially engaged during hippocampus network oscillations. Sci Rep 2016;6:29807. [PMID: 27411890 DOI: 10.1038/srep29807] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
78 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
79 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
80 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
81 Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 2014;34:2832-44. [PMID: 24553925 DOI: 10.1523/JNEUROSCI.3235-13.2014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
82 Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020;10:10696. [PMID: 32612119 DOI: 10.1038/s41598-020-67276-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
83 Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020;14:22. [PMID: 32457582 DOI: 10.3389/fnsys.2020.00022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
84 Thakkar MM, Engemann SC, Sharma R, Sahota P. Role of wake-promoting basal forebrain and adenosinergic mechanisms in sleep-promoting effects of ethanol. Alcohol Clin Exp Res 2010;34:997-1005. [PMID: 20374215 DOI: 10.1111/j.1530-0277.2010.01174.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]