BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 2013;33:10257-63. [PMID: 23785141 DOI: 10.1523/JNEUROSCI.1225-13.2013] [Cited by in Crossref: 170] [Cited by in F6Publishing: 98] [Article Influence: 18.9] [Reference Citation Analysis]
Number Citing Articles
1 Luppi PH, Peyron C, Fort P. Role of MCH neurons in paradoxical (REM) sleep control. Sleep 2013;36:1775-6. [PMID: 24293748 DOI: 10.5665/sleep.3192] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
2 Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016;39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
3 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
5 Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017;13:235-43. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
6 Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol 2015;49:299-310. [PMID: 25499829 DOI: 10.1016/j.alcohol.2014.07.019] [Cited by in Crossref: 133] [Cited by in F6Publishing: 100] [Article Influence: 19.0] [Reference Citation Analysis]
7 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
8 Khan AM. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods? Front Neurosci 2013;7:182. [PMID: 24385950 DOI: 10.3389/fnins.2013.00182] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
9 Gompf HS, Budygin EA, Fuller PM, Bass CE. Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals. Front Behav Neurosci 2015;9:152. [PMID: 26190981 DOI: 10.3389/fnbeh.2015.00152] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
10 Sharma R, Sahota P, Thakkar MM. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol. Sleep 2014;37:525-33. [PMID: 24587575 DOI: 10.5665/sleep.3490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
11 Guo R, Vaughan DT, Rojo ALA, Huang YH. Sleep-mediated regulation of reward circuits: implications in substance use disorders. Neuropsychopharmacology 2022. [PMID: 35710601 DOI: 10.1038/s41386-022-01356-8] [Reference Citation Analysis]
12 Melnattur K, Zhang B, Shaw PJ. Disrupting flight increases sleep and identifies a novel sleep-promoting pathway in Drosophila. Sci Adv 2020;6:eaaz2166. [PMID: 32494708 DOI: 10.1126/sciadv.aaz2166] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schöne C, Aitta-Aho T, Adamantidis A, Burdakov D. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 2015;35:5435-41. [PMID: 25855162 DOI: 10.1523/JNEUROSCI.5269-14.2015] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 11.3] [Reference Citation Analysis]
14 Sun Y, Liu M. Hypothalamic MCH Neuron Activity Dynamics during Cataplexy of Narcolepsy. eNeuro 2020;7:ENEURO. [PMID: 32303567 DOI: 10.1523/ENEURO.0017-20.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Davis CJ, Vanderheyden WM. Optogenetic sleep enhancement improves fear-associated memory processing following trauma exposure in rats. Sci Rep 2020;10:18025. [PMID: 33093538 DOI: 10.1038/s41598-020-75237-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
18 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
20 Vasquez JH, Borniger JC. Neuroendocrine and Behavioral Consequences of Hyperglycemia in Cancer. Endocrinology 2020;161:bqaa047. [PMID: 32193527 DOI: 10.1210/endocr/bqaa047] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, Agerberth B, Julkunen I, Horvath B, Kostyalik D, Kalmár L, Bagdy G, Huutoniemi A, Partinen M, Hökfelt T. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 2014;111:E3735-44. [PMID: 25136085 DOI: 10.1073/pnas.1412189111] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 7.4] [Reference Citation Analysis]
22 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
23 Brown J, Sagante A, Mayer T, Wright A, Bugescu R, Fuller PM, Leinninger G. Lateral Hypothalamic Area Neurotensin Neurons Are Required for Control of Orexin Neurons and Energy Balance. Endocrinology 2018;159:3158-76. [PMID: 30010830 DOI: 10.1210/en.2018-00311] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Blouin AM, Siegel JM. Relation of melanin concentrating hormone levels to sleep, emotion and hypocretin levels. Sleep 2013;36:1777. [PMID: 24293749 DOI: 10.5665/sleep.3194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
25 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
26 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
27 Cho CH, Yoon HK, Kang SG, Kim L, Lee EI, Lee HJ. Impact of Exposure to Dim Light at Night on Sleep in Female and Comparison with Male Subjects. Psychiatry Investig 2018;15:520-30. [PMID: 29551048 DOI: 10.30773/pi.2018.03.17] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
28 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
29 Kakava-Georgiadou N, Bullich-Vilarrubias C, Zwartkruis MM, Luijendijk MCM, Garner KM, Adan RAH. Considerations related to the use of short neuropeptide promoters in viral vectors targeting hypothalamic neurons. Sci Rep 2019;9:11146. [PMID: 31366942 DOI: 10.1038/s41598-019-47417-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015;9:475. [PMID: 26733789 DOI: 10.3389/fnins.2015.00475] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
31 Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018;120:12-20. [PMID: 30149182 DOI: 10.1016/j.nbd.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
32 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
33 Jiang H, Gallet S, Klemm P, Scholl P, Folz-Donahue K, Altmüller J, Alber J, Heilinger C, Kukat C, Loyens A, Müller-Fielitz H, Sundaram S, Schwaninger M, Prevot V, Brüning JC. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron 2020;107:306-319.e9. [PMID: 32407670 DOI: 10.1016/j.neuron.2020.04.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
34 Zeng Y, Yang J, Du J, Pu X, Yang X, Yang S, Yang T. Strategies of Functional Foods Promote Sleep in Human Being. Curr Signal Transduct Ther. 2014;9:148-155. [PMID: 26005400 DOI: 10.2174/1574362410666150205165504] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
35 Burdakov D, Karnani MM. Ultra-sparse Connectivity within the Lateral Hypothalamus. Curr Biol 2020;30:4063-4070.e2. [PMID: 32822604 DOI: 10.1016/j.cub.2020.07.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
36 Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2019;224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
37 Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019;406:314-24. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
38 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
39 Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014;34:6896-909. [PMID: 24828644 DOI: 10.1523/JNEUROSCI.5344-13.2014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
40 Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014;8:22. [PMID: 24574958 DOI: 10.3389/fnins.2014.00022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Dissel S, Klose M, Donlea J, Cao L, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Enhanced sleep reverses memory deficits and underlying pathology in Drosophila models of Alzheimer's disease. Neurobiol Sleep Circadian Rhythms 2017;2:15-26. [PMID: 29094110 DOI: 10.1016/j.nbscr.2016.09.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
42 Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014;111:287-99. [PMID: 24174649 DOI: 10.1152/jn.00504.2013] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 7.2] [Reference Citation Analysis]
43 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro 2016;3:ENEURO. [PMID: 27294196 DOI: 10.1523/ENEURO.0077-16.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
45 Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology. Front Neurol 2015;6:123. [PMID: 26074874 DOI: 10.3389/fneur.2015.00123] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 9.6] [Reference Citation Analysis]
46 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
47 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
49 Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017;44:110-5. [PMID: 28445807 DOI: 10.1016/j.conb.2017.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
50 Zayachkivsky A, Lehmkuhle MJ, Dudek FE. Long-term Continuous EEG Monitoring in Small Rodent Models of Human Disease Using the Epoch Wireless Transmitter System. J Vis Exp 2015;:e52554. [PMID: 26274779 DOI: 10.3791/52554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
51 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
52 Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, Liu CM, Song MY, Suarez AN, Szujewski CC, Rider D, Clarke JE, Darvas M, Appleyard SM, Kanoski SE. Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone. Cell Metab 2018;28:55-68.e7. [PMID: 29861386 DOI: 10.1016/j.cmet.2018.05.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 11.8] [Reference Citation Analysis]
53 Singh C, Rihel J, Prober DA. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017;27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
54 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
55 Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021;60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Reference Citation Analysis]
56 Volgin DV, Lu JW, Stettner GM, Mann GL, Ross RJ, Morrison AR, Kubin L. Time- and behavioral state-dependent changes in posterior hypothalamic GABAA receptors contribute to the regulation of sleep. PLoS One 2014;9:e86545. [PMID: 24466145 DOI: 10.1371/journal.pone.0086545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
57 Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, Liu M, Shiromani PJ. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019;39:4986-98. [PMID: 31036764 DOI: 10.1523/JNEUROSCI.0305-19.2019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
58 Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016;336:102-13. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
59 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
60 DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice. Front Aging Neurosci 2017;9:219. [PMID: 28769782 DOI: 10.3389/fnagi.2017.00219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
61 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
62 Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 2016;43:1298-306. [PMID: 26369866 DOI: 10.1111/ejn.13074] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 8.1] [Reference Citation Analysis]
63 Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022;23:4599. [PMID: 35562990 DOI: 10.3390/ijms23094599] [Reference Citation Analysis]
64 Pace M, Baracchi F, Gao B, Bassetti C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015;38:1707-18. [PMID: 26085290 DOI: 10.5665/sleep.5148] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
65 Ding S, Gao L, Kukun H, Ai K, Zhao W, Xie C, Wang Y. Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study. Front Neurosci 2021;15:634984. [PMID: 33716655 DOI: 10.3389/fnins.2021.634984] [Reference Citation Analysis]
66 Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020;117:19590-8. [PMID: 32732431 DOI: 10.1073/pnas.1921909117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
67 Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol 2016;26:2137-43. [PMID: 27426511 DOI: 10.1016/j.cub.2016.05.078] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 15.3] [Reference Citation Analysis]
68 Gazea M, Patchev AV, Anderzhanova E, Leidmaa E, Pissioti A, Flachskamm C, Almeida OFX, Kimura M. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. J Neurosci 2018;38:441-51. [PMID: 29196316 DOI: 10.1523/JNEUROSCI.1333-17.2017] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
69 Fuller PM, Yamanaka A, Lazarus M. How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature (Austin) 2015;2:406-17. [PMID: 27227054 DOI: 10.1080/23328940.2015.1075095] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
70 Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014;5:165. [PMID: 25309500 DOI: 10.3389/fneur.2014.00165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
71 Morin LP. A Path to Sleep Is through the Eye. eNeuro 2015;2:ENEURO. [PMID: 26464977 DOI: 10.1523/ENEURO.0069-14.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
72 Krueger JM, Frank MG, Wisor JP, Roy S. Sleep function: Toward elucidating an enigma. Sleep Med Rev 2016;28:46-54. [PMID: 26447948 DOI: 10.1016/j.smrv.2015.08.005] [Cited by in Crossref: 126] [Cited by in F6Publishing: 103] [Article Influence: 18.0] [Reference Citation Analysis]
73 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
74 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
75 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
76 Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, Dong Y, Tseng GC, Fang J, Seney ML, Huang YH. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021;26:3152-68. [PMID: 33093653 DOI: 10.1038/s41380-020-00921-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019;365:1308-13. [PMID: 31604241 DOI: 10.1126/science.aax9238] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 25.5] [Reference Citation Analysis]
78 Reid-Varley WB, Ponce Martinez C, Khurshid KA. Sleep disorders and disrupted sleep in addiction, withdrawal and abstinence with focus on alcohol and opioids. J Neurol Sci 2020;411:116713. [PMID: 32087437 DOI: 10.1016/j.jns.2020.116713] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
79 Liguori C, Chiaravalloti A, Nuccetelli M, Izzi F, Sancesario G, Cimini A, Bernardini S, Schillaci O, Mercuri NB, Fabio P. Hypothalamic dysfunction is related to sleep impairment and CSF biomarkers in Alzheimer's disease. J Neurol 2017;264:2215-23. [PMID: 28900724 DOI: 10.1007/s00415-017-8613-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
80 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019;24:1284-95. [PMID: 30377299 DOI: 10.1038/s41380-018-0291-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
81 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
82 Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. Neurochem J 2017;11:138-48. [DOI: 10.1134/s181971241702012x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
83 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
84 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
85 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
86 Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 2018;41. [PMID: 29986116 DOI: 10.1093/sleep/zsy130] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
87 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
88 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
89 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
90 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
91 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
92 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
94 Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 2013;16:1637-43. [PMID: 24056699 DOI: 10.1038/nn.3522] [Cited by in Crossref: 254] [Cited by in F6Publishing: 225] [Article Influence: 28.2] [Reference Citation Analysis]
95 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
96 Jones BE, Hassani OK. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013;36:1769-72. [PMID: 24293746 DOI: 10.5665/sleep.3188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
97 Pelluru D, Konadhode R, Shiromani PJ. MCH neurons are the primary sleep-promoting group. Sleep 2013;36:1779-81. [PMID: 24293750 DOI: 10.5665/sleep.3196] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
98 Kodani Y, Kawata M, Suga H, Kaneko YS, Nakashima A, Kameyama T, Saito K, Nagasaki H. Characterization of Hypothalamic MCH Neuron Development in a 3D Differentiation System of Mouse Embryonic Stem Cells. eNeuro 2022;9:ENEURO. [PMID: 35437265 DOI: 10.1523/ENEURO.0442-21.2022] [Reference Citation Analysis]
99 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
100 Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014;8:22. [PMID: 24574958 DOI: 10.3389/fnins.2014.00022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
101 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
102 Joiner WJ. The Neurobiological Basis of Sleep and Sleep Disorders. Physiology (Bethesda) 2018;33:317-27. [PMID: 30109824 DOI: 10.1152/physiol.00013.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
103 John J, Kodama T, Siegel JM. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2014;307:R704-10. [PMID: 25031227 DOI: 10.1152/ajpregu.00114.2014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
104 Holst SC, Landolt HP. Sleep-Wake Neurochemistry. Sleep Med Clin 2022;17:151-60. [PMID: 35659070 DOI: 10.1016/j.jsmc.2022.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
106 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
107 Parks GS, Wang L, Wang Z, Civelli O. Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 2014;522:3817-33. [PMID: 24978951 DOI: 10.1002/cne.23642] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
108 Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015;6:190. [PMID: 26388832 DOI: 10.3389/fneur.2015.00190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]