BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS, Yagami K, Takahashi S, Goto K, Sakurai T. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci 2005;25:7459-69. [PMID: 16093397 DOI: 10.1523/JNEUROSCI.1193-05.2005] [Cited by in Crossref: 92] [Cited by in F6Publishing: 51] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
2 Wang R, Lu Y, Cicha MZ, Singh MV, Benson CJ, Madden CJ, Chapleau MW, Abboud FM. TMEM16B determines cholecystokinin sensitivity of intestinal vagal afferents of nodose neurons. JCI Insight 2019;4:122058. [PMID: 30843875 DOI: 10.1172/jci.insight.122058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
3 Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest 2008;118:2471-81. [PMID: 18551194 DOI: 10.1172/JCI35115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 29] [Article Influence: 0.6] [Reference Citation Analysis]
4 Alberto CO, Trask RB, Quinlan ME, Hirasawa M. Bidirectional dopaminergic modulation of excitatory synaptic transmission in orexin neurons. J Neurosci 2006;26:10043-50. [PMID: 17005867 DOI: 10.1523/JNEUROSCI.1819-06.2006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
5 Xiao A, Gibbons AE, Luker KE, Luker GD. Fluorescence Lifetime Imaging of Apoptosis. Tomography 2015;1:115-24. [PMID: 26771007 DOI: 10.18383/j.tom.2015.00163] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
6 Sinchak K, Wagner EJ. Estradiol signaling in the regulation of reproduction and energy balance. Front Neuroendocrinol. 2012;33:342-363. [PMID: 22981653 DOI: 10.1016/j.yfrne.2012.08.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
7 Chieffi S, Carotenuto M, Monda V, Valenzano A, Villano I, Precenzano F, Tafuri D, Salerno M, Filippi N, Nuccio F, Ruberto M, De Luca V, Cipolloni L, Cibelli G, Mollica MP, Iacono D, Nigro E, Monda M, Messina G, Messina A. Orexin System: The Key for a Healthy Life. Front Physiol 2017;8:357. [PMID: 28620314 DOI: 10.3389/fphys.2017.00357] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 13.6] [Reference Citation Analysis]
8 Giardino WJ, Eban-Rothschild A, Christoffel DJ, Li SB, Malenka RC, de Lecea L. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat Neurosci 2018;21:1084-95. [PMID: 30038273 DOI: 10.1038/s41593-018-0198-x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
9 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
10 Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 2009;106:4459-64. [PMID: 19246384 DOI: 10.1073/pnas.0811126106] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
11 Parsons MP, Burt J, Cranford A, Alberto C, Zipperlen K, Hirasawa M. Nociceptin induces hypophagia in the perifornical and lateral hypothalamic area. PLoS One 2012;7:e45350. [PMID: 23028954 DOI: 10.1371/journal.pone.0045350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
12 Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 2009;29:3705-14. [PMID: 19321767 DOI: 10.1523/JNEUROSCI.0431-09.2009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
13 Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 2013;7:192. [PMID: 24348342 DOI: 10.3389/fncir.2013.00192] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
14 Li SB, Jones JR, de Lecea L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 2016;18:7. [PMID: 26733323 DOI: 10.1007/s11920-015-0639-0] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
15 Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 2011;6:e20360. [PMID: 21647372 DOI: 10.1371/journal.pone.0020360] [Cited by in Crossref: 152] [Cited by in F6Publishing: 157] [Article Influence: 13.8] [Reference Citation Analysis]
16 Wang S, Zhang AP, Kurada L, Matsui T, Lei S. Cholecystokinin facilitates neuronal excitability in the entorhinal cortex via activation of TRPC-like channels. J Neurophysiol 2011;106:1515-24. [PMID: 21753024 DOI: 10.1152/jn.00025.2011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
17 Messina A, Bitetti I, Precenzano F, Iacono D, Messina G, Roccella M, Parisi L, Salerno M, Valenzano A, Maltese A, Salerno M, Sessa F, Albano GD, Marotta R, Villano I, Marsala G, Zammit C, Lavano F, Monda M, Cibelli G, Lavano SM, Gallai B, Toraldo R, Monda V, Carotenuto M. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projections. Front Neurol 2018;9:95. [PMID: 29541053 DOI: 10.3389/fneur.2018.00095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
18 Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021;133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Reference Citation Analysis]
19 Deng PY, Lei S. Bidirectional modulation of GABAergic transmission by cholecystokinin in hippocampal dentate gyrus granule cells of juvenile rats. J Physiol 2006;572:425-42. [PMID: 16455686 DOI: 10.1113/jphysiol.2005.104463] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 2.3] [Reference Citation Analysis]
20 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
21 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
22 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
23 Hirashima N, Tsunematsu T, Ichiki K, Tanaka H, Kilduff TS, Yamanaka A. Neuropeptide B induces slow wave sleep in mice. Sleep 2011;34:31-7. [PMID: 21203369 DOI: 10.1093/sleep/34.1.31] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
24 Kukkonen JP, Leonard CS. Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 2014;171:314-31. [PMID: 23902572 DOI: 10.1111/bph.12324] [Cited by in Crossref: 104] [Cited by in F6Publishing: 91] [Article Influence: 13.0] [Reference Citation Analysis]
25 Kim YR, Lee SY, Lee SM, Shim I, Lee MY. Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep. Biomed Pharmacother 2021;146:112301. [PMID: 34915415 DOI: 10.1016/j.biopha.2021.112301] [Reference Citation Analysis]
26 Ma J, Dankulich-Nagrudny L, Lowe G. Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. PLoS One 2013;8:e64170. [PMID: 23691163 DOI: 10.1371/journal.pone.0064170] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
27 Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, Sakurai T, Kilduff TS. GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol 2006;574:399-414. [PMID: 16627567 DOI: 10.1113/jphysiol.2006.108266] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 3.8] [Reference Citation Analysis]
28 Schöne C, Burdakov D. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. Curr Top Behav Neurosci 2017;33:51-74. [PMID: 27830577 DOI: 10.1007/7854_2016_45] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
29 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
30 Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB. Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 2008;28:9101-10. [PMID: 18784290 DOI: 10.1523/JNEUROSCI.1766-08.2008] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
31 Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021;9:624312. [PMID: 33681204 DOI: 10.3389/fcell.2021.624312] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, Shioda S, Sakurai T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 2013;8:e62391. [PMID: 23620827 DOI: 10.1371/journal.pone.0062391] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
33 Chung L, Moore SD, Cox CL. Cholecystokinin action on layer 6b neurons in somatosensory cortex. Brain Res 2009;1282:10-9. [PMID: 19497313 DOI: 10.1016/j.brainres.2009.05.061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
34 Lee SY, Soltesz I. Cholecystokinin: a multi-functional molecular switch of neuronal circuits. Dev Neurobiol 2011;71:83-91. [PMID: 21154912 DOI: 10.1002/dneu.20815] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
35 Giacobini P, Wray S. Prenatal expression of cholecystokinin (CCK) in the central nervous system (CNS) of mouse. Neurosci Lett 2008;438:96-101. [PMID: 18462884 DOI: 10.1016/j.neulet.2008.04.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
36 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
37 Raymond JS, Rehn S, Hoyos CM, Bowen MT. The influence of oxytocin-based interventions on sleep-wake and sleep-related behaviour and neurobiology: A systematic review of preclinical and clinical studies. Neurosci Biobehav Rev 2021;131:1005-26. [PMID: 34673110 DOI: 10.1016/j.neubiorev.2021.10.016] [Reference Citation Analysis]
38 Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. The Journal of Nutritional Biochemistry 2022. [DOI: 10.1016/j.jnutbio.2022.109033] [Reference Citation Analysis]
39 Li Y, Cui ZJ. NanoLuc Bioluminescence-Driven Photodynamic Activation of Cholecystokinin 1 Receptor with Genetically-Encoded Protein Photosensitizer MiniSOG. Int J Mol Sci 2020;21:E3763. [PMID: 32466589 DOI: 10.3390/ijms21113763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Lyons DJ, Hellysaz A, Broberger C. Prolactin regulates tuberoinfundibular dopamine neuron discharge pattern: novel feedback control mechanisms in the lactotrophic axis. J Neurosci 2012;32:8074-83. [PMID: 22674282 DOI: 10.1523/JNEUROSCI.0129-12.2012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
41 Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30:12642-12652. [PMID: 20861370 DOI: 10.1523/jneurosci.2120-10.2010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
42 Viveros MP, Bermúdez-Silva FJ, Lopez-Rodriguez AB, Wagner EJ. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction. Pharmaceuticals (Basel) 2011;4:1101-36. [PMID: 32143540 DOI: 10.3390/ph4081101] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 2011;31:10529-39. [PMID: 21775598 DOI: 10.1523/JNEUROSCI.0784-11.2011] [Cited by in Crossref: 152] [Cited by in F6Publishing: 92] [Article Influence: 13.8] [Reference Citation Analysis]
44 Lee SY, Földy C, Szabadics J, Soltesz I. Cell-type-specific CCK2 receptor signaling underlies the cholecystokinin-mediated selective excitation of hippocampal parvalbumin-positive fast-spiking basket cells. J Neurosci 2011;31:10993-1002. [PMID: 21795548 DOI: 10.1523/JNEUROSCI.1970-11.2011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
45 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
46 Yamanaka A, Tsunematsu T. New approaches for the study of orexin function. J Neuroendocrinol 2010;22:818-24. [PMID: 20456607 DOI: 10.1111/j.1365-2826.2010.02015.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
47 Aran A, Shors I, Lin L, Mignot E, Schimmel MS. CSF levels of hypocretin-1 (orexin-A) peak during early infancy in humans. Sleep 2012;35:187-91. [PMID: 22294808 DOI: 10.5665/sleep.1618] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
48 Tsunematsu T, Fu LY, Yamanaka A, Ichiki K, Tanoue A, Sakurai T, van den Pol AN. Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis. J Neurosci 2008;28:228-38. [PMID: 18171940 DOI: 10.1523/JNEUROSCI.3490-07.2008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
49 Li Y, Iida H, Kimata K, Zhuo L, Ota A, Kimura S, Yin X, Deie M, Ushida T. Establishment of a mouse model for injury-induced scar formation and the accompanying chronic pain: Comprehensive microarray analysis of molecular expressions in fibrosis and hyperalgesia. Mol Pain 2019;15:1744806919892389. [PMID: 31749400 DOI: 10.1177/1744806919892389] [Reference Citation Analysis]
50 Dalal J, Roh JH, Maloney SE, Akuffo A, Shah S, Yuan H, Wamsley B, Jones WB, de Guzman Strong C, Gray PA, Holtzman DM, Heintz N, Dougherty JD. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev 2013;27:565-78. [PMID: 23431030 DOI: 10.1101/gad.207654.112] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
51 Journel M, Chaumontet C, Darcel N, Fromentin G, Tomé D. Brain responses to high-protein diets. Adv Nutr 2012;3:322-9. [PMID: 22585905 DOI: 10.3945/an.112.002071] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 6.4] [Reference Citation Analysis]
52 Calvigioni D, Máté Z, Fuzik J, Girach F, Zhang MD, Varro A, Beiersdorf J, Schwindling C, Yanagawa Y, Dockray GJ, McBain CJ, Hökfelt T, Szabó G, Keimpema E, Harkany T. Functional Differentiation of Cholecystokinin-Containing Interneurons Destined for the Cerebral Cortex. Cereb Cortex 2017;27:2453-68. [PMID: 27102657 DOI: 10.1093/cercor/bhw094] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
53 Palmer AE, Qin Y, Park JG, McCombs JE. Design and application of genetically encoded biosensors. Trends Biotechnol 2011;29:144-52. [PMID: 21251723 DOI: 10.1016/j.tibtech.2010.12.004] [Cited by in Crossref: 166] [Cited by in F6Publishing: 137] [Article Influence: 15.1] [Reference Citation Analysis]
54 Zhao H, Kinch DC, Simasko SM. Pharmacological investigations of the cellular transduction pathways used by cholecystokinin to activate nodose neurons. Auton Neurosci 2011;164:20-6. [PMID: 21664195 DOI: 10.1016/j.autneu.2011.05.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
55 Grisanti LA, Kurada L, Cilz NI, Porter JE, Lei S. Phospholipase C not protein kinase C is required for the activation of TRPC5 channels by cholecystokinin. Eur J Pharmacol 2012;689:17-24. [PMID: 22683873 DOI: 10.1016/j.ejphar.2012.05.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
56 Leonard CS, Kukkonen JP. Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 2014;171:294-313. [PMID: 23848055 DOI: 10.1111/bph.12296] [Cited by in Crossref: 82] [Cited by in F6Publishing: 84] [Article Influence: 10.3] [Reference Citation Analysis]