BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tsunematsu T, Kilduff TS, Boyden ES, Takahashi S, Tominaga M, Yamanaka A. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 2011;31:10529-39. [PMID: 21775598 DOI: 10.1523/JNEUROSCI.0784-11.2011] [Cited by in Crossref: 152] [Cited by in F6Publishing: 92] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Nussinovitch U, Gepstein L. Optogenetics for suppression of cardiac electrical activity in human and rat cardiomyocyte cultures. Neurophotonics 2015;2:031204. [PMID: 26158013 DOI: 10.1117/1.NPh.2.3.031204] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 3.1] [Reference Citation Analysis]
2 Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. CNS Neurosci Ther 2018;24:549-63. [PMID: 29446232 DOI: 10.1111/cns.12815] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
4 Eban-Rothschild A, Giardino WJ, de Lecea L. To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 2017;44:132-8. [PMID: 28500869 DOI: 10.1016/j.conb.2017.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 8.4] [Reference Citation Analysis]
5 Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.04.005] [Reference Citation Analysis]
6 Hollander JA, Pham D, Fowler CD, Kenny PJ. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 2012;6:47. [PMID: 22837742 DOI: 10.3389/fnbeh.2012.00047] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 5.6] [Reference Citation Analysis]
7 Burgess CR, Scammell TE. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci 2012;32:12305-11. [PMID: 22956821 DOI: 10.1523/JNEUROSCI.2630-12.2012] [Cited by in Crossref: 82] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
8 Zhang H, Cohen AE. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond. Trends Biotechnol 2017;35:625-39. [PMID: 28552428 DOI: 10.1016/j.tibtech.2017.04.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
9 Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, Shioda S, Sakurai T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 2013;8:e62391. [PMID: 23620827 DOI: 10.1371/journal.pone.0062391] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
10 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
11 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
12 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
13 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
14 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Stern AL, Naidoo N. Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. Springerplus 2015;4:25. [PMID: 25635245 DOI: 10.1186/s40064-014-0777-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
16 Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sørensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanlal SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, Roska B, Cardin JA, Boyden ES. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 2014;17:1123-9. [PMID: 24997763 DOI: 10.1038/nn.3752] [Cited by in Crossref: 305] [Cited by in F6Publishing: 253] [Article Influence: 38.1] [Reference Citation Analysis]
17 Ramirez AD, Gotter AL, Fox SV, Tannenbaum PL, Yao L, Tye SJ, McDonald T, Brunner J, Garson SL, Reiss DR, Kuduk SD, Coleman PJ, Uslaner JM, Hodgson R, Browne SE, Renger JJ, Winrow CJ. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Front Neurosci 2013;7:254. [PMID: 24399926 DOI: 10.3389/fnins.2013.00254] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
18 Berglund K, Birkner E, Augustine GJ, Hochgeschwender U. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS One 2013;8:e59759. [PMID: 23544095 DOI: 10.1371/journal.pone.0059759] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
19 Belle MD, Hughes AT, Bechtold DA, Cunningham P, Pierucci M, Burdakov D, Piggins HD. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014;34:3607-21. [PMID: 24599460 DOI: 10.1523/JNEUROSCI.3388-13.2014] [Cited by in Crossref: 81] [Cited by in F6Publishing: 34] [Article Influence: 10.1] [Reference Citation Analysis]
20 Zeng H, Madisen L. Mouse transgenic approaches in optogenetics. Prog Brain Res 2012;196:193-213. [PMID: 22341327 DOI: 10.1016/B978-0-444-59426-6.00010-0] [Cited by in Crossref: 56] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
21 Clément O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, Luppi PH. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 2012;32:16763-74. [PMID: 23175830 DOI: 10.1523/JNEUROSCI.1885-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
22 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
23 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
24 Lawler DE, Chew YL, Hawk JD, Aljobeh A, Schafer WR, Albrecht DR. Sleep Analysis in Adult C. elegans Reveals State-Dependent Alteration of Neural and Behavioral Responses. J Neurosci 2021;41:1892-907. [PMID: 33446520 DOI: 10.1523/JNEUROSCI.1701-20.2020] [Reference Citation Analysis]
25 Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsáki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 2012;15:793-802. [PMID: 22446880 DOI: 10.1038/nn.3078] [Cited by in Crossref: 758] [Cited by in F6Publishing: 686] [Article Influence: 75.8] [Reference Citation Analysis]
26 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
27 Chen Q, Zeng Z, Hu Z. Optogenetics in neuroscience: what we gain from studies in mammals. Neurosci Bull 2012;28:423-34. [PMID: 22833040 DOI: 10.1007/s12264-012-1250-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
28 Beuckmann CT, Ueno T, Nakagawa M, Suzuki M, Akasofu S. Preclinical in vivo characterization of lemborexant (E2006), a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep 2019;42:zsz076. [PMID: 30923834 DOI: 10.1093/sleep/zsz076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
29 Schöne C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 2012;32:12437-43. [PMID: 22956835 DOI: 10.1523/JNEUROSCI.0706-12.2012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 66] [Article Influence: 9.5] [Reference Citation Analysis]
30 Acker L, Pino EN, Boyden ES, Desimone R. FEF inactivation with improved optogenetic methods. Proc Natl Acad Sci U S A 2016;113:E7297-306. [PMID: 27807140 DOI: 10.1073/pnas.1610784113] [Cited by in Crossref: 57] [Cited by in F6Publishing: 46] [Article Influence: 9.5] [Reference Citation Analysis]
31 Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017;95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
32 Birkner E, Berglund K, Klein ME, Augustine GJ, Hochgeschwender U. Non-invasive activation of optogenetic actuators. Proc SPIE Int Soc Opt Eng 2014;8928:89282F. [PMID: 27965518 DOI: 10.1117/12.2044157] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
33 Mehr JB, Mitchison D, Bowrey HE, James MH. Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021. [PMID: 34145404 DOI: 10.1038/s41386-021-01052-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Tarasiuk A, Segev Y. Abnormal Growth and Feeding Behavior in Upper Airway Obstruction in Rats. Front Endocrinol (Lausanne) 2018;9:298. [PMID: 29915561 DOI: 10.3389/fendo.2018.00298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
35 Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci 2012;1264:72-86. [PMID: 22803681 DOI: 10.1111/j.1749-6632.2012.06585.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
36 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019;24:1284-95. [PMID: 30377299 DOI: 10.1038/s41380-018-0291-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
37 Teske JA, Perez-Leighton CE, Billington CJ, Kotz CM. Role of the locus coeruleus in enhanced orexin A-induced spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 2013;305:R1337-45. [PMID: 24089383 DOI: 10.1152/ajpregu.00229.2013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
38 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
39 Morin LP. A Path to Sleep Is through the Eye. eNeuro 2015;2:ENEURO. [PMID: 26464977 DOI: 10.1523/ENEURO.0069-14.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
40 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
41 Roth BL. DREADDs for Neuroscientists. Neuron 2016;89:683-94. [PMID: 26889809 DOI: 10.1016/j.neuron.2016.01.040] [Cited by in Crossref: 627] [Cited by in F6Publishing: 559] [Article Influence: 104.5] [Reference Citation Analysis]
42 Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D. Generalized CNS arousal: An elementary force within the vertebrate nervous system. Neurosci Biobehav Rev 2016;68:167-76. [PMID: 27216213 DOI: 10.1016/j.neubiorev.2016.05.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
43 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
44 Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 2013;7:192. [PMID: 24348342 DOI: 10.3389/fncir.2013.00192] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
45 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
46 Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, Agerberth B, Julkunen I, Horvath B, Kostyalik D, Kalmár L, Bagdy G, Huutoniemi A, Partinen M, Hökfelt T. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 2014;111:E3735-44. [PMID: 25136085 DOI: 10.1073/pnas.1412189111] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 7.4] [Reference Citation Analysis]
47 Fuller PM, Yamanaka A, Lazarus M. How genetically engineered systems are helping to define, and in some cases redefine, the neurobiological basis of sleep and wake. Temperature (Austin) 2015;2:406-17. [PMID: 27227054 DOI: 10.1080/23328940.2015.1075095] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
49 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
50 Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020;45:141-65. [PMID: 31234199 DOI: 10.1038/s41386-019-0446-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
51 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
52 Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022;375:eabh3021. [PMID: 35201886 DOI: 10.1126/science.abh3021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Tremblay S, Acker L, Afraz A, Albaugh DL, Amita H, Andrei AR, Angelucci A, Aschner A, Balan PF, Basso MA, Benvenuti G, Bohlen MO, Caiola MJ, Calcedo R, Cavanaugh J, Chen Y, Chen S, Chernov MM, Clark AM, Dai J, Debes SR, Deisseroth K, Desimone R, Dragoi V, Egger SW, Eldridge MAG, El-Nahal HG, Fabbrini F, Federer F, Fetsch CR, Fortuna MG, Friedman RM, Fujii N, Gail A, Galvan A, Ghosh S, Gieselmann MA, Gulli RA, Hikosaka O, Hosseini EA, Hu X, Hüer J, Inoue KI, Janz R, Jazayeri M, Jiang R, Ju N, Kar K, Klein C, Kohn A, Komatsu M, Maeda K, Martinez-Trujillo JC, Matsumoto M, Maunsell JHR, Mendoza-Halliday D, Monosov IE, Muers RS, Nurminen L, Ortiz-Rios M, O'Shea DJ, Palfi S, Petkov CI, Pojoga S, Rajalingham R, Ramakrishnan C, Remington ED, Revsine C, Roe AW, Sabes PN, Saunders RC, Scherberger H, Schmid MC, Schultz W, Seidemann E, Senova YS, Shadlen MN, Sheinberg DL, Siu C, Smith Y, Solomon SS, Sommer MA, Spudich JL, Stauffer WR, Takada M, Tang S, Thiele A, Treue S, Vanduffel W, Vogels R, Whitmire MP, Wichmann T, Wurtz RH, Xu H, Yazdan-Shahmorad A, Shenoy KV, DiCarlo JJ, Platt ML. An Open Resource for Non-human Primate Optogenetics. Neuron 2020;108:1075-1090.e6. [PMID: 33080229 DOI: 10.1016/j.neuron.2020.09.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
54 Lewis LD, Voigts J, Flores FJ, Schmitt LI, Wilson MA, Halassa MM, Brown EN. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife 2015;4:e08760. [PMID: 26460547 DOI: 10.7554/eLife.08760] [Cited by in Crossref: 87] [Cited by in F6Publishing: 49] [Article Influence: 12.4] [Reference Citation Analysis]
55 Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019;36:802-14. [PMID: 30136622 DOI: 10.1089/neu.2018.5810] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
56 Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. Learn Mem 2015;22:232-8. [PMID: 25787711 DOI: 10.1101/lm.038026.114] [Cited by in Crossref: 79] [Cited by in F6Publishing: 57] [Article Influence: 11.3] [Reference Citation Analysis]
57 Katayama K, Mochizuki A, Kato T, Ikeda M, Ikawa Y, Nakamura S, Nakayama K, Wakabayashi N, Baba K, Inoue T. Dark/light transition and vigilance states modulate jaw-closing muscle activity level in mice. Neuroscience Research 2015;101:24-31. [DOI: 10.1016/j.neures.2015.07.004] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
58 Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 2017;37:9574-92. [PMID: 28874450 DOI: 10.1523/JNEUROSCI.0580-17.2017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
59 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
60 Nakamura S, Baratta MV, Cooper DC. A method for high fidelity optogenetic control of individual pyramidal neurons in vivo. J Vis Exp 2013. [PMID: 24022017 DOI: 10.3791/50291] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
61 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Rothman SM, Mattson MP. Sleep disturbances in Alzheimer's and Parkinson's diseases. Neuromolecular Med 2012;14:194-204. [PMID: 22552887 DOI: 10.1007/s12017-012-8181-2] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
63 Brodnik ZD, Bernstein DL, Prince CD, España RA. Hypocretin receptor 1 blockade preferentially reduces high effort responding for cocaine without promoting sleep. Behav Brain Res 2015;291:377-84. [PMID: 26049058 DOI: 10.1016/j.bbr.2015.05.051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
64 Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro 2016;3:ENEURO. [PMID: 27294196 DOI: 10.1523/ENEURO.0077-16.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
65 Asrican B, Augustine GJ, Berglund K, Chen S, Chow N, Deisseroth K, Feng G, Gloss B, Hira R, Hoffmann C, Kasai H, Katarya M, Kim J, Kudolo J, Lee LM, Lo SQ, Mancuso J, Matsuzaki M, Nakajima R, Qiu L, Tan G, Tang Y, Ting JT, Tsuda S, Wen L, Zhang X, Zhao S. Next-generation transgenic mice for optogenetic analysis of neural circuits. Front Neural Circuits 2013;7:160. [PMID: 24324405 DOI: 10.3389/fncir.2013.00160] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 5.3] [Reference Citation Analysis]
66 Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 2020;6:eabd0384. [PMID: 33158870 DOI: 10.1126/sciadv.abd0384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
67 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
68 Teske JA, Mavanji V. Energy expenditure: role of orexin. Vitam Horm 2012;89:91-109. [PMID: 22640610 DOI: 10.1016/B978-0-12-394623-2.00006-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
69 Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 2013;33:10257-63. [PMID: 23785141 DOI: 10.1523/JNEUROSCI.1225-13.2013] [Cited by in Crossref: 170] [Cited by in F6Publishing: 98] [Article Influence: 18.9] [Reference Citation Analysis]
70 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
71 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
72 Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014;9:e112849. [PMID: 25398141 DOI: 10.1371/journal.pone.0112849] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
73 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
74 Ting JT, Feng G. Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 2013;255:3-18. [PMID: 23473879 DOI: 10.1016/j.bbr.2013.02.037] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
75 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
76 Tsunematsu T. Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics. Adv Exp Med Biol 2021;1293:391-406. [PMID: 33398828 DOI: 10.1007/978-981-15-8763-4_25] [Reference Citation Analysis]
77 Good CH, Brager AJ, Capaldi VF, Mysliwiec V. Sleep in the United States Military. Neuropsychopharmacology 2020;45:176-91. [PMID: 31185484 DOI: 10.1038/s41386-019-0431-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
78 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
79 Pignatelli J, de Sevilla MEF, Sperber J, Horrillo D, Medina-gomez G, Aleman IT. Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypo-Thalamic Orexin Neurons. IJMS 2022;23:4679. [DOI: 10.3390/ijms23094679] [Reference Citation Analysis]
80 Grace KP, Liu H, Horner RL. 5-HT1A receptor-responsive pedunculopontine tegmental neurons suppress REM sleep and respiratory motor activity. J Neurosci 2012;32:1622-33. [PMID: 22302804 DOI: 10.1523/JNEUROSCI.5700-10.2012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
81 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
82 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
83 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
84 Tabuchi S, Tsunematsu T, Kilduff TS, Sugio S, Xu M, Tanaka KF, Takahashi S, Tominaga M, Yamanaka A. Influence of inhibitory serotonergic inputs to orexin/hypocretin neurons on the diurnal rhythm of sleep and wakefulness. Sleep 2013;36:1391-404. [PMID: 23997373 DOI: 10.5665/sleep.2972] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
85 Chow BY, Han X, Boyden ES. Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res 2012;196:49-61. [PMID: 22341320 DOI: 10.1016/B978-0-444-59426-6.00003-3] [Cited by in Crossref: 38] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
86 Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2017;152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
87 Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 2013;7:43. [PMID: 23730276 DOI: 10.3389/fnbeh.2013.00043] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
88 Qiu MH, Chen MC, Fuller PM, Lu J. Stimulation of the Pontine Parabrachial Nucleus Promotes Wakefulness via Extra-thalamic Forebrain Circuit Nodes. Curr Biol 2016;26:2301-12. [PMID: 27546576 DOI: 10.1016/j.cub.2016.07.054] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
89 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
90 Yamanashi T, Maki M, Kojima K, Shibukawa A, Tsukamoto T, Chowdhury S, Yamanaka A, Takagi S, Sudo Y. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination. Sci Rep 2019;9:7863. [PMID: 31133660 DOI: 10.1038/s41598-019-44308-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
91 Tanaka S, Okusa MD. Optogenetics in Understanding Mechanisms of Acute Kidney Injury. Nephron 2018;140:152-5. [PMID: 29990991 DOI: 10.1159/000491498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Kos A, Loohuis NF, Glennon JC, Celikel T, Martens GJ, Tiesinga PH, Aschrafi A. Recent developments in optical neuromodulation technologies. Mol Neurobiol 2013;47:172-85. [PMID: 23065387 DOI: 10.1007/s12035-012-8361-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
93 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
94 Hung CJ, Yamanaka A, Ono D. Conditional Knockout of Bmal1 in Corticotropin-Releasing Factor Neurons Does Not Alter Sleep–Wake Rhythm in Mice. Front Neurosci 2022;15:808754. [DOI: 10.3389/fnins.2021.808754] [Reference Citation Analysis]
95 Choi J, Kwon M, Jun SC. A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. Sensors (Basel) 2020;20:E2770. [PMID: 32414060 DOI: 10.3390/s20102770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Kohlmeier KA, Tyler CJ, Kalogiannis M, Ishibashi M, Kristensen MP, Gumenchuk I, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci 2013;7:246. [PMID: 24391530 DOI: 10.3389/fnins.2013.00246] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
97 Bernstein JG, Boyden ES. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 2011;15:592-600. [PMID: 22055387 DOI: 10.1016/j.tics.2011.10.003] [Cited by in Crossref: 180] [Cited by in F6Publishing: 150] [Article Influence: 16.4] [Reference Citation Analysis]
98 Chan AW. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2013;54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
99 Touriño C, Eban-Rothschild A, de Lecea L. Optogenetics in psychiatric diseases. Curr Opin Neurobiol 2013;23:430-5. [PMID: 23642859 DOI: 10.1016/j.conb.2013.03.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]