BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen PF, Buttermore ED, Sahin M. Biallelic Mutations in TSC2 Lead to Abnormalities Associated with Cortical Tubers in Human iPSC-Derived Neurons. J Neurosci 2019;39:9294-305. [PMID: 31591157 DOI: 10.1523/JNEUROSCI.0642-19.2019] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Buttermore ED. Phenotypic assay development with iPSC-derived neurons. Phenotyping of Human iPSC-derived Neurons 2023. [DOI: 10.1016/b978-0-12-822277-5.00015-8] [Reference Citation Analysis]
2 Sundberg M. Differentiation of Purkinje cells from pluripotent stem cells for disease phenotyping in vitro. Phenotyping of Human iPSC-derived Neurons 2023. [DOI: 10.1016/b978-0-12-822277-5.00002-x] [Reference Citation Analysis]
3 Buttermore ED, Anderson NC, Chen P, Makhortova NR, Kim KH, Wafa SMA, Dwyer S, Micozzi JM, Winden KD, Zhang B, Han M, Kleiman RJ, Brownstein CA, Sahin M, Gonzalez-heydrich J. 16p13.11 deletion variants associated with neuropsychiatric disorders cause morphological and synaptic changes in induced pluripotent stem cell-derived neurons. Front Psychiatry 2022;13. [DOI: 10.3389/fpsyt.2022.924956] [Reference Citation Analysis]
4 Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022;16:1031075. [DOI: 10.3389/fnins.2022.1031075] [Reference Citation Analysis]
5 De Meulemeester A, Heylen L, Siekierska A, Mills JD, Romagnolo A, Van Der Wel NN, Aronica E, de Witte PAM. Hyperactivation of mTORC1 in a double hit mutant zebrafish model of tuberous sclerosis complex causes increased seizure susceptibility and neurodevelopmental abnormalities. Front Cell Dev Biol 2022;10:952832. [DOI: 10.3389/fcell.2022.952832] [Reference Citation Analysis]
6 Girodengo M, Ultanir SK, Bateman JM. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front Mol Neurosci 2022;15:1005631. [DOI: 10.3389/fnmol.2022.1005631] [Reference Citation Analysis]
7 Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, Thomas MS, Zhou X, Matteson P, Xing J, Millonig JH, Dicicco-bloom E. Dysregulation of mTOR Signaling Mediates Common Neurite and Migration Defects in Both Idiopathic and 16p11.2 Deletion Autism Neural Precursor Cells.. [DOI: 10.1101/2022.09.17.508382] [Reference Citation Analysis]
8 Jang A, Petrova B, Cheong TC, Zawadzki ME, Jones JK, Culhane AJ, Shipley FB, Chiarle R, Wong ET, Kanarek N, Lehtinen MK. Choroid plexus-CSF-targeted antioxidant therapy protects the brain from toxicity of cancer chemotherapy. Neuron 2022:S0896-6273(22)00741-3. [PMID: 36070751 DOI: 10.1016/j.neuron.2022.08.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Karalis V, Caval-Holme F, Bateup HS. Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex. Nat Commun 2022;13:4665. [PMID: 35945201 DOI: 10.1038/s41467-022-31961-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Levitin MO, Rawlins LE, Sanchez-andrade G, Arshad OA, Collins SC, Sawiak SJ, Iffland PH, Andersson MH, Bupp C, Cambridge EL, Coomber EL, Ellis I, Herkert JC, Ironfield H, Jory L, Kretz PF, Kant SG, Neaverson A, Nibbeling E, Rowley C, Relton E, Sanderson M, Scott EM, Stewart H, Shuen AY, Schreiber J, Tuck L, Tonks J, Terkelsen T, van Ravenswaaij-arts C, Vasudevan P, Wenger O, Wright M, Day A, Hunter A, Patel M, Lelliott CJ, Crino PB, Yalcin B, Crosby A, Baple EL, Logan DW, Hurles ME, Gerety SS. Mouse and cellular models of KPTN-related disorder implicate mTOR signalling in cognitive and progressive overgrowth phenotypes.. [DOI: 10.1101/2022.07.15.500213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022;7:229. [PMID: 35817793 DOI: 10.1038/s41392-022-01081-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Niu W, Siciliano B, Wen Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J Pediatr 2022. [PMID: 35759110 DOI: 10.1007/s12519-022-00576-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Weng OY, Li Y, Wang L. Modeling Epilepsy Using Human Induced Pluripotent Stem Cells-Derived Neuronal Cultures Carrying Mutations in Ion Channels and the Mechanistic Target of Rapamycin Pathway. Front Mol Neurosci 2022;15:810081. [DOI: 10.3389/fnmol.2022.810081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy 2022;71:i81-99. [DOI: 10.1093/jmicro/dfab039] [Reference Citation Analysis]
15 McCready FP, Gordillo-Sampedro S, Pradeepan K, Martinez-Trujillo J, Ellis J. Multielectrode Arrays for Functional Phenotyping of Neurons from Induced Pluripotent Stem Cell Models of Neurodevelopmental Disorders. Biology (Basel) 2022;11:316. [PMID: 35205182 DOI: 10.3390/biology11020316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ihrie RA, Henske EP. Modeling tuberous sclerosis with organoids. Science 2022;375:382-3. [PMID: 35084978 DOI: 10.1126/science.abn6158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight 2021;6:e150120. [PMID: 34877936 DOI: 10.1172/jci.insight.150120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021;12:100089. [PMID: 34786551 DOI: 10.1016/j.mbplus.2021.100089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021;3:630600. [PMID: 34713254 DOI: 10.3389/fgeed.2021.630600] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
20 Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021;12:1746. [PMID: 34828352 DOI: 10.3390/genes12111746] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021;18:1478-89. [PMID: 34595731 DOI: 10.1007/s13311-021-01115-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca2+ Influx via L-Type Ca2+ Channels. J Neurosci 2021;41:8134-49. [PMID: 34417327 DOI: 10.1523/JNEUROSCI.1930-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Karalis V, Caval-holme F, Bateup HS. Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex.. [DOI: 10.1101/2021.07.21.453275] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Sundberg M, Pinson H, Smith RS, Winden KD, Venugopal P, Tai DJC, Gusella JF, Talkowski ME, Walsh CA, Tegmark M, Sahin M. 16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nat Commun 2021;12:2897. [PMID: 34006844 DOI: 10.1038/s41467-021-23113-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
25 Catlett TS, Onesto MM, McCann AJ, Rempel SK, Glass J, Franz DN, Gómez TM. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun 2021;12:2589. [PMID: 33972524 DOI: 10.1038/s41467-021-22770-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
26 Villa C, Combi R, Conconi D, Lavitrano M. Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Autism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics 2021;13:280. [PMID: 33669772 DOI: 10.3390/pharmaceutics13020280] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
27 Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron-Glia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures. Cells 2021;10:134. [PMID: 33445520 DOI: 10.3390/cells10010134] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
28 Cheah PS, Prabhakar S, Yellen D, Beauchamp RL, Zhang X, Kasamatsu S, Bronson RT, Thiele EA, Kwiatkowski DJ, Stemmer-Rachamimov A, György B, Ling KH, Kaneki M, Tannous BA, Ramesh V, Maguire CA, Breakefield XO. Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. Sci Adv 2021;7:eabb1703. [PMID: 33523984 DOI: 10.1126/sciadv.abb1703] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
29 Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes (Basel) 2020;11:E1376. [PMID: 33233737 DOI: 10.3390/genes11111376] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
30 Alsaqati M, Heine VM, Harwood AJ. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Mol Autism 2020;11:80. [PMID: 33076974 DOI: 10.1186/s13229-020-00391-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
31 Lo LH, Lai KO. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: studies in human pluripotent stem cells. Mol Autism 2020;11:40. [PMID: 32460854 DOI: 10.1186/s13229-020-00349-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
32 Culotta L, Penzes P. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD. Mol Autism 2020;11:32. [PMID: 32393347 DOI: 10.1186/s13229-020-00339-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
33 Dang LT, Glanowska KM, Iffland Ii PH, Barnes AE, Baybis M, Liu Y, Patino G, Vaid S, Streicher AM, Parker WE, Kim S, Moon UY, Henry FE, Murphy GG, Sutton M, Parent JM, Crino PB. Multimodal Analysis of STRADA Function in Brain Development. Front Cell Neurosci 2020;14:122. [PMID: 32457579 DOI: 10.3389/fncel.2020.00122] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
34 Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism 2020;11:16. [PMID: 32075691 DOI: 10.1186/s13229-020-0320-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
35 Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. Int J Mol Sci 2020;21:E482. [PMID: 31940887 DOI: 10.3390/ijms21020482] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
36 Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, Talkowski M, Thiele E, Sheridan SD, Haggarty SJ, Ramesh V. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism 2020;11:2. [PMID: 31921404 DOI: 10.1186/s13229-019-0311-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]