BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen A, Singh C, Oikonomou G, Prober DA. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017;4:ENEURO. [PMID: 28275716 DOI: 10.1523/ENEURO.0286-16.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Robea MA, Ciobica A, Curpan AS, Plavan G, Strungaru S, Lefter R, Nicoara M. Preliminary Results Regarding Sleep in a Zebrafish Model of Autism Spectrum Disorder. Brain Sci 2021;11:556. [PMID: 33924776 DOI: 10.3390/brainsci11050556] [Reference Citation Analysis]
2 Reichmann F, Rimmer N, Tilley CA, Dalla Vecchia E, Pinion J, Al Oustah A, Carreño Gutiérrez H, Young AMJ, McDearmid JR, Winter MJ, Norton WHJ. The zebrafish histamine H3 receptor modulates aggression, neural activity and forebrain functional connectivity. Acta Physiol (Oxf) 2020;230:e13543. [PMID: 32743878 DOI: 10.1111/apha.13543] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
3 Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 2020;14:606900. [PMID: 33536882 DOI: 10.3389/fnbeh.2020.606900] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. Aquaculture and Fisheries 2021. [DOI: 10.1016/j.aaf.2021.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022;11:1798. [PMID: 35681493 DOI: 10.3390/cells11111798] [Reference Citation Analysis]
6 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
7 Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019;42. [PMID: 30239935 DOI: 10.1093/sleep/zsy183] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
8 Singh C, Rihel J, Prober DA. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017;27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
9 Berteotti C, Lo Martire V, Alvente S, Bastianini S, Bombardi C, Matteoli G, Ohtsu H, Lin JS, Silvani A, Zoccoli G. Orexin/Hypocretin and Histamine Cross-Talk on Hypothalamic Neuron Counts in Mice. Front Neurosci 2021;15:660518. [PMID: 34093114 DOI: 10.3389/fnins.2021.660518] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Chen S, Reichert S, Singh C, Oikonomou G, Rihel J, Prober DA. Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron 2017;95:153-168.e6. [PMID: 28648499 DOI: 10.1016/j.neuron.2017.06.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
11 Stankiewicz AJ, McGowan EM, Yu L, Zhdanova IV. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging. Int J Mol Sci 2017;18:E2243. [PMID: 29072584 DOI: 10.3390/ijms18112243] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]