BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
Number Citing Articles
1 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
2 Bittencourt JC. Anatomical and functional heterogeneity of 'hypothalamic' peptidergic neuron populations. Nat Rev Endocrinol 2022. [PMID: 35469075 DOI: 10.1038/s41574-022-00680-9] [Reference Citation Analysis]
3 Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 2020;9:e58901. [PMID: 33119507 DOI: 10.7554/eLife.58901] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch HWM, Khan AM, Chee MJ. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp Neurol 2020;528:1833-55. [PMID: 31950494 DOI: 10.1002/cne.24857] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
6 Hühne A, Echtler L, Kling C, Stephan M, Schmidt MV, Rossner MJ, Landgraf D. Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice. Addict Biol 2022;27:e13105. [PMID: 34672045 DOI: 10.1111/adb.13105] [Reference Citation Analysis]
7 Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018;159:3631-42. [PMID: 30215694 DOI: 10.1210/en.2018-00449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
8 Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020;96:109728. [PMID: 31394141 DOI: 10.1016/j.pnpbp.2019.109728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
9 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
10 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE. Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 2020;178:108270. [PMID: 32795460 DOI: 10.1016/j.neuropharm.2020.108270] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
12 Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE, Kim YS, Ramakrishnan C, Deisseroth K, Stuber GD. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron 2021;109:3823-3837.e6. [PMID: 34624220 DOI: 10.1016/j.neuron.2021.09.020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, Dong Y, Tseng GC, Fang J, Seney ML, Huang YH. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021;26:3152-68. [PMID: 33093653 DOI: 10.1038/s41380-020-00921-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Chantranupong L, Saulnier JL, Wang W, Jones DR, Pacold ME, Sabatini BL. Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. Elife 2020;9:e59699. [PMID: 33043885 DOI: 10.7554/eLife.59699] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bolton JL, Ruiz CM, Rismanchi N, Sanchez GA, Castillo E, Huang J, Cross C, Baram TZ, Mahler SV. Early-life adversity facilitates acquisition of cocaine self-administration and induces persistent anhedonia. Neurobiol Stress 2018;8:57-67. [PMID: 29888304 DOI: 10.1016/j.ynstr.2018.01.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
16 Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019;24:1284-95. [PMID: 30377299 DOI: 10.1038/s41380-018-0291-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
17 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
18 Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2019;224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
19 Sere P, Zsigri N, Raffai T, Furdan S, Győri F, Crunelli V, Lőrincz ML. Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures. Int J Mol Sci 2021;22:9466. [PMID: 34502374 DOI: 10.3390/ijms22179466] [Reference Citation Analysis]
20 Farzi A, Lau J, Ip CK, Qi Y, Shi YC, Zhang L, Tasan R, Sperk G, Herzog H. Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. Elife 2018;7:e36494. [PMID: 30129922 DOI: 10.7554/eLife.36494] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
21 Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2019;154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
22 Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020;223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2020;43:zsz296. [PMID: 31919524 DOI: 10.1093/sleep/zsz296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
24 Michael NJ, Caron A, Lee CE, Castorena CM, Lee S, Zigman JM, Williams KW, Elmquist JK. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Mol Metab 2020;35:100956. [PMID: 32244183 DOI: 10.1016/j.molmet.2020.01.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. Adv Neurobiol 2018;21:101-93. [PMID: 30334222 DOI: 10.1007/978-3-319-94593-4_6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
28 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Schneeberger M, Tan K, Nectow AR, Parolari L, Caglar C, Azevedo E, Li Z, Domingos A, Friedman JM. Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 2018;13:83-9. [PMID: 29843980 DOI: 10.1016/j.molmet.2018.05.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
30 Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
31 Quina LA, Walker A, Morton G, Han V, Turner EE. GAD2 Expression Defines a Class of Excitatory Lateral Habenula Neurons in Mice that Project to the Raphe and Pontine Tegmentum. eNeuro 2020;7:ENEURO. [PMID: 32332079 DOI: 10.1523/ENEURO.0527-19.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021;17:745-55. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Reference Citation Analysis]
33 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
34 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
36 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:83-93. [PMID: 30546103 DOI: 10.1038/s41583-018-0097-x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
37 Liu JJ, Bello NT, Pang ZP. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State. J Neurosci 2017;37:11854-66. [PMID: 29089444 DOI: 10.1523/JNEUROSCI.1942-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 4.6] [Reference Citation Analysis]
38 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]