BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gamage AM, Tan KS, Chan WOY, Liu J, Tan CW, Ong YK, Thong M, Andiappan AK, Anderson DE, Wang Y, Wang LF. Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathog 2020;16:e1009130. [PMID: 33284849 DOI: 10.1371/journal.ppat.1009130] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Singh J, Samal J, Kumar V, Sharma J, Agrawal U, Ehtesham NZ, Sundar D, Rahman SA, Hira S, Hasnain SE. Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7, B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications. Viruses 2021;13:439. [PMID: 33803400 DOI: 10.3390/v13030439] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 33.0] [Reference Citation Analysis]
2 González-Candelas F, Shaw MA, Phan T, Kulkarni-Kale U, Paraskevis D, Luciani F, Kimura H, Sironi M. One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. Infect Genet Evol 2021;92:104869. [PMID: 33915216 DOI: 10.1016/j.meegid.2021.104869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Hasan MZ, Islam S, Matsumoto K, Kawai T. SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Sci Rep 2021;11:16814. [PMID: 34413339 DOI: 10.1038/s41598-021-96110-3] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021;22:8912. [PMID: 34445619 DOI: 10.3390/ijms22168912] [Reference Citation Analysis]
5 Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw 2021;21:e3. [PMID: 33728096 DOI: 10.4110/in.2021.21.e3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
6 Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021;102. [PMID: 33855951 DOI: 10.1099/jgv.0.001584] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 29.0] [Reference Citation Analysis]
7 Nakayama T, Lee IT, Jiang S, Matter MS, Yan CH, Overdevest JB, Wu CT, Goltsev Y, Shih LC, Liao CK, Zhu B, Bai Y, Lidsky P, Xiao Y, Zarabanda D, Yang A, Easwaran M, Schürch CM, Chu P, Chen H, Stalder AK, McIlwain DR, Borchard NA, Gall PA, Dholakia SS, Le W, Xu L, Tai CJ, Yeh TH, Erickson-Direnzo E, Duran JM, Mertz KD, Hwang PH, Haslbauer JD, Jackson PK, Menter T, Andino R, Canoll PD, DeConde AS, Patel ZM, Tzankov A, Nolan GP, Nayak JV. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021;2:100421. [PMID: 34604819 DOI: 10.1016/j.xcrm.2021.100421] [Reference Citation Analysis]
8 Qing E, Kicmal T, Kumar B, Hawkins GM, Timm E, Perlman S, Gallagher T. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. mBio 2021;12:e0159021. [PMID: 34340537 DOI: 10.1128/mBio.01590-21] [Reference Citation Analysis]
9 Ren AL, Digby RJ, Needham EJ. Neurological update: COVID-19. J Neurol 2021. [PMID: 33929617 DOI: 10.1007/s00415-021-10581-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Gómez CE, Perdiguero B, Esteban M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines (Basel) 2021;9:243. [PMID: 33799505 DOI: 10.3390/vaccines9030243] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 56.0] [Reference Citation Analysis]
11 Jamieson AM. Probing the early upper respiratory responses to SARS-CoV-2. Physiol Rep 2021;9:e14836. [PMID: 33991452 DOI: 10.14814/phy2.14836] [Reference Citation Analysis]
12 Gómez-Carballa A, Rivero-Calle I, Pardo-Seco J, Gómez-Rial J, Rivero-Velasco C, Rodríguez-Núñez N, Barbeito-Castiñeiras G, Pérez-Freixo H, Cebey-López M, Barral-Arca R, Rodriguez-Tenreiro C, Dacosta-Urbieta A, Bello X, Pischedda S, Currás-Tuala MJ, Viz-Lasheras S, Martinón-Torres F, Salas A; GEN-COVID study group. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environ Res 2022;210:112890. [PMID: 35202626 DOI: 10.1016/j.envres.2022.112890] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
13 Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022;80:101687. [PMID: 35843590 DOI: 10.1016/j.arr.2022.101687] [Reference Citation Analysis]
14 Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022;13:844447. [DOI: 10.3389/fmicb.2022.844447] [Reference Citation Analysis]
15 Gamage AM, Tan KS, Chan WOY, Lew ZZR, Liu J, Tan CW, Rajagopalan D, Lin QXX, Tan LM, Venkatesh PN, Ong YK, Thong M, Lin RTP, Prabhakar S, Wang Y, Wang LF. Human Nasal Epithelial Cells Sustain Persistent SARS-CoV-2 Infection In Vitro, despite Eliciting a Prolonged Antiviral Response. mBio 2022;:e0343621. [PMID: 35038898 DOI: 10.1128/mbio.03436-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila M, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncations of ORF7a that limit immune suppression. medRxiv 2021:2021. [PMID: 33655280 DOI: 10.1101/2021.02.22.21252253] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Do TND, Claes S, Schols D, Neyts J, Jochmans D. SARS-CoV-2 Virion Infectivity and Cytokine Production in Primary Human Airway Epithelial Cells. Viruses 2022;14:951. [DOI: 10.3390/v14050951] [Reference Citation Analysis]
18 Abdel-Moneim AS, Abdelwhab EM, Memish ZA. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021;558:1-12. [PMID: 33691216 DOI: 10.1016/j.virol.2021.02.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Costa JH, Aziz S, Noceda C, Arnholdt-Schmitt B. Major Complex Trait for Early De Novo Programming 'CoV-MAC-TED' Detected in Human Nasal Epithelial Cells Infected by Two SARS-CoV-2 Variants Is Promising to Help in Designing Therapeutic Strategies. Vaccines (Basel) 2021;9:1399. [PMID: 34960145 DOI: 10.3390/vaccines9121399] [Reference Citation Analysis]
20 Hassan SS, Kodakandla V, Redwan EM, Lundstrom K, Pal Choudhury P, Abd El-Aziz TM, Takayama K, Kandimalla R, Lal A, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palù G, Chauhan G, Adadi P, Tambuwala M, Brufsky AM, Baetas-da-Cruz W, Barh D, Azevedo V, Bazan NG, Andrade BS, Santana Silva RJ, Uversky VN. An issue of concern: unique truncated ORF8 protein variants of SARS-CoV-2. PeerJ 2022;10:e13136. [PMID: 35341060 DOI: 10.7717/peerj.13136] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Vo GV, Bagyinszky E, An SSA. COVID-19 Genetic Variants and Their Potential Impact in Vaccine Development. Microorganisms 2022;10:598. [DOI: 10.3390/microorganisms10030598] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Fernandes MF, Chan JZ, Hung CCJ, Tomczewski MV, Duncan RE. Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein. Life Sci 2022;:120624. [PMID: 35568225 DOI: 10.1016/j.lfs.2022.120624] [Reference Citation Analysis]
23 Fong SW, Yeo NK, Chan YH, Goh YS, Amrun SN, Ang N, Rajapakse MP, Lum J, Foo S, Lee CY, Carissimo G, Chee RS, Torres-Ruesta A, Tay MZ, Chang ZW, Poh CM, Young BE, Tambyah PA, Kalimuddin S, Leo YS, Lye DC, Lee B, Biswas S, Howland SW, Renia L, Ng LFP. Robust Virus-Specific Adaptive Immunity in COVID-19 Patients with SARS-CoV-2 Δ382 Variant Infection. J Clin Immunol 2021. [PMID: 34716845 DOI: 10.1007/s10875-021-01142-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The human nose organoid respiratory virus model: an ex-vivo human challenge model to study RSV and SARS-CoV-2 pathogenesis and evaluate therapeutics. bioRxiv 2021:2021. [PMID: 34341793 DOI: 10.1101/2021.07.28.453844] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Posch W, Vosper J, Noureen A, Zaderer V, Witting C, Bertacchi G, Gstir R, Filipek PA, Bonn GK, Huber LA, Bellmann-Weiler R, Lass-Flörl C, Wilflingseder D. C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J Allergy Clin Immunol 2021;147:2083-2097.e6. [PMID: 33852936 DOI: 10.1016/j.jaci.2021.03.038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Nagaraja S, Jain D, Kesavardhana S. Inflammasome regulation in driving COVID-19 severity in humans and immune tolerance in bats. J Leukoc Biol 2021. [PMID: 34057760 DOI: 10.1002/JLB.4COVHR0221-093RR] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Stölting H, Baillon L, Frise R, Bonner K, Hewitt RJ, Molyneaux PL, Gore ML, Barclay WS, Saglani S, Lloyd CM; Breathing Together Consortium. Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunol 2022. [PMID: 35840680 DOI: 10.1038/s41385-022-00545-4] [Reference Citation Analysis]
28 Zarkoob H, Allué-Guardia A, Chen YC, Jung O, Garcia-Vilanova A, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Yewdell J, Torrelles JB, Martinez-Sobrido L, Cherry S, Ferrer M, Lee EM. Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents. bioRxiv 2021:2021. [PMID: 34013274 DOI: 10.1101/2021.05.11.443693] [Reference Citation Analysis]
29 Matsuoka K, Imahashi N, Ohno M, Ode H, Nakata Y, Kubota M, Sugimoto A, Imahashi M, Yokomaku Y, Iwatani Y. SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.101724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wu X, Xia T, Shin WJ, Yu KM, Jung W, Herrmann A, Foo SS, Chen W, Zhang P, Lee JS, Poo H, Comhair SAA, Jehi L, Choi YK, Ensser A, Jung JU. Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. mBio 2022;:e0040222. [PMID: 35343786 DOI: 10.1128/mbio.00402-22] [Reference Citation Analysis]
31 Mazur-Panasiuk N, Rabalski L, Gromowski T, Nowicki G, Kowalski M, Wydmanski W, Szulc P, Kosinski M, Gackowska K, Drweska-Matelska N, Grabowski J, Piotrowska-Mietelska A, Szewczyk B, Bienkowska-Szewczyk K, Swadzba J, Labaj P, Grzybek M, Pyrc K. Expansion of a SARS-CoV-2 Delta variant with an 872 nt deletion encompassing ORF7a, ORF7b and ORF8, Poland, July to August 2021. Euro Surveill 2021;26. [PMID: 34596017 DOI: 10.2807/1560-7917.ES.2021.26.39.2100902] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila MA, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep 2021;35:109197. [PMID: 34043946 DOI: 10.1016/j.celrep.2021.109197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
33 Sia WR, Zheng Y, Han F, Chen S, Ma S, Wang L, Leeansyah E. Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses 2022;14:150. [DOI: 10.3390/v14010150] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sharma A, Ong JW, Loke MF, Chua EG, Lee JJ, Choi HW, Tan YJ, Lal SK, Chow VT. Comparative Transcriptomic and Molecular Pathway Analyses of HL-CZ Human Pro-Monocytic Cells Expressing SARS-CoV-2 Spike S1, S2, NP, NSP15 and NSP16 Genes. Microorganisms 2021;9:1193. [PMID: 34073047 DOI: 10.3390/microorganisms9061193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. bioRxiv 2021:2021. [PMID: 34230929 DOI: 10.1101/2021.07.02.450920] [Reference Citation Analysis]
36 Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ, Spegarova JS, Gothe F, Stephenson E, Gardner AI, Murphy S, Scott J, Garnett JP, Carrie S, Powell J, Khan CMA, Huang L, Hussain R, Coxhead J, Davey T, Simpson AJ, Haniffa M, Hambleton S, Brodlie M, Ward C, Trost M, Reynolds G, Duncan CJA. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun 2021;12:7092. [PMID: 34876592 DOI: 10.1038/s41467-021-27318-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Bridges JP, Vladar EK, Huang H, Mason RJ. Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax 2021:thoraxjnl-2021-217561. [PMID: 34404754 DOI: 10.1136/thoraxjnl-2021-217561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Rajan A, Weaver AM, Aloisio GM, Jelinski J, Johnson HL, Venable SF, McBride T, Aideyan L, Piedra FA, Ye X, Melicoff-Portillo E, Yerramilli MRK, Zeng XL, Mancini MA, Stossi F, Maresso AW, Kotkar SA, Estes MK, Blutt S, Avadhanula V, Piedra PA. The Human Nose Organoid Respiratory Virus Model: an Ex Vivo Human Challenge Model To Study Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Pathogenesis and Evaluate Therapeutics. mBio 2022;:e0351121. [PMID: 35164569 DOI: 10.1128/mbio.03511-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]