BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stott RT, Kritsky O, Tsai LH. Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 2021;16:e0249691. [PMID: 34197463 DOI: 10.1371/journal.pone.0249691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Hou Y, Park J, Dan X, Chu X, Yang B, Hussain M, Croteau DL, Bohr VA. RecQ dysfunction contributes to social and depressive-like behavior and affects aldolase activity in mice. Neurobiol Dis 2023;:106092. [PMID: 36948261 DOI: 10.1016/j.nbd.2023.106092] [Reference Citation Analysis]
2 Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023. [PMID: 36732588 DOI: 10.1038/s41380-023-01966-8] [Reference Citation Analysis]
3 Herbert A. Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023;2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Reference Citation Analysis]
4 Fenster RJ, Suh J. The double-edged sword of the double-stranded break. Neuropsychopharmacology 2023;48:230-1. [PMID: 35931813 DOI: 10.1038/s41386-022-01403-4] [Reference Citation Analysis]
5 Lu LF, Wang J, Liu KZ, Yi XN, Ma ZJ, Li YQ, Feng RJ. Double-strand breaks induced by learning-like activity may increase risk of de novo mutations in schizophrenia. Asian J Psychiatr 2022;78:103292. [PMID: 36252325 DOI: 10.1016/j.ajp.2022.103292] [Reference Citation Analysis]
6 Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S, Reiter AH, Tsai LH, Madabhushi R. Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 2022;82:3794-3809.e8. [PMID: 36206766 DOI: 10.1016/j.molcel.2022.09.012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Giuditta A, Zucconi GG, Sadile A. Brain Metabolic DNA: A Long Story and Some Conclusions. Mol Neurobiol 2022. [PMID: 36251232 DOI: 10.1007/s12035-022-03030-y] [Reference Citation Analysis]
8 Pascarella G, Hon CC, Hashimoto K, Busch A, Luginbühl J, Parr C, Hin Yip W, Abe K, Kratz A, Bonetti A, Agostini F, Severin J, Murayama S, Suzuki Y, Gustincich S, Frith M, Carninci P. Recombination of repeat elements generates somatic complexity in human genomes. Cell 2022;185:3025-3040.e6. [DOI: 10.1016/j.cell.2022.06.032] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Weber Boutros S, Unni VK, Raber J. An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory. IJMS 2022;23:8352. [DOI: 10.3390/ijms23158352] [Reference Citation Analysis]
10 Boutros SW, Kessler K, Unni VK, Raber J. Infusion of etoposide in the CA1 disrupts hippocampal immediate early gene expression and hippocampus-dependent learning. Sci Rep 2022;12:12834. [PMID: 35896679 DOI: 10.1038/s41598-022-17052-y] [Reference Citation Analysis]
11 Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022;16:836885. [DOI: 10.3389/fncel.2022.836885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Qing X, Zhang G, Wang Z. DNA damage response in neurodevelopment and neuromaintenance. The FEBS Journal 2022. [DOI: 10.1111/febs.16535] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Welch G, Tsai LH. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease. EMBO Rep 2022;23:e54217. [PMID: 35499251 DOI: 10.15252/embr.202154217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Caldecott KW, Ward ME, Nussenzweig A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat Genet 2022;54:115-20. [PMID: 35145299 DOI: 10.1038/s41588-021-01001-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 16.0] [Reference Citation Analysis]
15 Bernstein C. DNA Methylation and Establishing Memory. Genet Epigenet 2022;15:251686572110724. [DOI: 10.1177/25168657211072499] [Reference Citation Analysis]
16 Crewe M, Madabhushi R. Topoisomerase-Mediated DNA Damage in Neurological Disorders. Front Aging Neurosci 2021;13:751742. [PMID: 34899270 DOI: 10.3389/fnagi.2021.751742] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Maity S, Farrell K, Navabpour S, Narayanan SN, Jarome TJ. Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci 2021;22:12280. [PMID: 34830163 DOI: 10.3390/ijms222212280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Pascarella G, Hashimoto K, Busch A, Luginbühl J, Parr C, Hon CC, Yip WH, Abe K, Kratz A, Bonetti A, Agostini F, Severin J, Murayama S, Suzuki Y, Gustincich S, Frith M, Carninci P. Recombination of repeat elements generates somatic complexity in human genomes.. [DOI: 10.1101/2020.07.02.163816] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]