BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rattray I, Smith EJ, Crum WR, Walker TA, Gale R, Bates GP, Modo M. Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the HdhQ150/Q150 Mouse Model of Huntington's Disease. PLoS One 2017;12:e0168556. [PMID: 28099507 DOI: 10.1371/journal.pone.0168556] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Manivannan A, Foley LM, Hitchens TK, Rattray I, Bates GP, Modo M. Ex vivo 100 μm isotropic diffusion MRI‐based tractography of connectivity changes in the end‐stage R6/2 mouse model of Huntington's disease. Neuroprotection 2022. [DOI: 10.1002/nep3.14] [Reference Citation Analysis]
2 Chakravorty A, Sharma A, Sheeba V, Manjithaya R. Glutamatergic Synapse Dysfunction in Drosophila Neuromuscular Junctions Can Be Rescued by Proteostasis Modulation. Front Mol Neurosci 2022;15:842772. [DOI: 10.3389/fnmol.2022.842772] [Reference Citation Analysis]
3 Syeda W, Ermine CM, Khilf MS, Wright D, Brait VH, Nithianantharajah J, Kolbe S, Johnston LA, Thompson LH, Brodtmann A. Long-term structural brain changes in adult rats after mild ischaemic stroke. Brain Communications 2022;4. [DOI: 10.1093/braincomms/fcac185] [Reference Citation Analysis]
4 Murphy ER, Thompson R, Osman KL, Haxton C, Brothers M, Lee L, Warncke K, Smith CL, Keilholz AN, Hamad A, Golzy M, Bunyak F, Ma L, Nichols NL, Lever TE. A Strength Endurance Exercise Paradigm Mitigates Deficits in Hypoglossal-Tongue Axis Function, Strength, and Structure in a Rodent Model of Hypoglossal Motor Neuron Degeneration. Front Neurosci 2022;16:869592. [DOI: 10.3389/fnins.2022.869592] [Reference Citation Analysis]
5 Ahn K, Lee SJ, Mook-Jung I. White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Res Rev 2022;75:101574. [PMID: 35093614 DOI: 10.1016/j.arr.2022.101574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Glikmann-Johnston Y, Mercieca EC, Carmichael AM, Alexander B, Harding IH, Stout JC. Hippocampal and striatal volumes correlate with spatial memory impairment in Huntington's disease. J Neurosci Res 2021. [PMID: 34516012 DOI: 10.1002/jnr.24966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Brait VH, Wright DK, Nategh M, Oman A, Syeda WT, Ermine CM, O'Brien KR, Werden E, Churilov L, Johnston LA, Thompson LH, Nithianantharajah J, Jackman KA, Brodtmann A. Longitudinal hippocampal volumetric changes in mice following brain infarction. Sci Rep 2021;11:10269. [PMID: 33986303 DOI: 10.1038/s41598-021-88284-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Simmons DA, Mills BD, Butler Iii RR, Kuan J, McHugh TLM, Akers C, Zhou J, Syriani W, Grouban M, Zeineh M, Longo FM. Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington's Disease: Preclinical Evidence with the p75NTR Ligand LM11A-31. Neurotherapeutics 2021. [PMID: 33786806 DOI: 10.1007/s13311-021-01023-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Plácido E, de Paula Nascimento-castro C, Welter PG, Gil-mohapel J, Brocardo PS. Linking Huntington disease, brain-derived neurotrophic factor, and depressive-like behaviors. The Neuroscience of Depression 2021. [DOI: 10.1016/b978-0-12-817935-2.00042-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Cabanas M, Piquemal M, Pistono C, Arnaud S, Rakesh D, Poinama E, Guillou JL, Garret M, Cho YH. Correlations Between Mutant Huntingtin Aggregates and Behavioral Changes in R6/1 Mice. J Huntingtons Dis 2020;9:33-45. [PMID: 31868674 DOI: 10.3233/JHD-190352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Rangel-Barajas C, Rebec GV. Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. Curr Protoc Neurosci 2018;83:e47. [PMID: 30040221 DOI: 10.1002/cpns.47] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
12 Petrella LI, Castelhano JM, Ribeiro M, Sereno JV, Gonçalves SI, Laço MN, Hayden MR, Rego AC, Castelo-Branco M. A whole brain longitudinal study in the YAC128 mouse model of Huntington's disease shows distinct trajectories of neurochemical, structural connectivity and volumetric changes. Hum Mol Genet 2018;27:2125-37. [PMID: 29668904 DOI: 10.1093/hmg/ddy119] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
13 Nguyen TV, Hayes M, Zbesko JC, Frye JB, Congrove NR, Belichenko NP, McKay BS, Longo FM, Doyle KP. Alzheimer's associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 2018;6:100. [PMID: 30249297 DOI: 10.1186/s40478-018-0603-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
14 de Paula Nascimento-Castro C, Wink AC, da Fônseca VS, Bianco CD, Winkelmann-Duarte EC, Farina M, Rodrigues ALS, Gil-Mohapel J, de Bem AF, Brocardo PS. Antidepressant Effects of Probucol on Early-Symptomatic YAC128 Transgenic Mice for Huntington's Disease. Neural Plast 2018;2018:4056383. [PMID: 30186318 DOI: 10.1155/2018/4056383] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
15 Farshim PP, Bates GP. Mouse Models of Huntington's Disease. Methods Mol Biol 2018;1780:97-120. [PMID: 29856016 DOI: 10.1007/978-1-4939-7825-0_6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]