BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Feng YM, Zhao D, Zhang N, Yu CG, Zhang Q, Thijs L, Staessen JA. Insulin Resistance in Relation to Lipids and Inflammation in Type-2 Diabetic Patients and Non-Diabetic People. PLoS One. 2016;11:e0153171. [PMID: 27073920 DOI: 10.1371/journal.pone.0153171] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen H, Su L, Bao J, Zhang K, Li Y, Mao E. The impact of pulmonary tuberculosis on immunological and metabolic features of diabetic patients. Front Immunol 2022;13:973991. [DOI: 10.3389/fimmu.2022.973991] [Reference Citation Analysis]
2 Biswas M, Suvarna R, Krishnan S V, Devasia T, Shenoy Belle V, Prabhu K. The mechanistic role of neutrophil lymphocyte ratio perturbations in the leading non communicable lifestyle diseases. F1000Res 2022;11:960. [DOI: 10.12688/f1000research.123245.1] [Reference Citation Analysis]
3 Jiang M, Li X, Wu H, Su F, Cao L, Ren X, Hu J, Tatenda G, Cheng M, Wen Y. Triglyceride-Glucose Index for the Diagnosis of Metabolic Syndrome: A Cross-Sectional Study of 298,652 Individuals Receiving a Health Check-Up in China. Int J Endocrinol 2022;2022:3583603. [PMID: 35814916 DOI: 10.1155/2022/3583603] [Reference Citation Analysis]
4 Chen J, Yang X, Huang L, Zhang Z, Yao J, Liang H, Zhou W. Insulin resistance biomarkers in small-for-gestational-age infants born to mothers with gestational diabetes mellitus. J Matern Fetal Neonatal Med 2021;:1-5. [PMID: 34913819 DOI: 10.1080/14767058.2021.2014449] [Reference Citation Analysis]
5 Viurcos-Sanabria R, Escobedo G. Immunometabolic bases of type 2 diabetes in the severity of COVID-19. World J Diabetes 2021; 12(7): 1026-1041 [PMID: 34326952 DOI: 10.4239/wjd.v12.i7.1026] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev 2021;:e3483. [PMID: 34245096 DOI: 10.1002/dmrr.3483] [Reference Citation Analysis]
7 Mirr M, Owecki M. An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes. Medicina (Kaunas) 2021;57:100. [PMID: 33498604 DOI: 10.3390/medicina57020100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yang SC, Hsu CY, Chou WL, Fang JY, Chuang SY. Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules 2020;25:E5713. [PMID: 33287318 DOI: 10.3390/molecules25235713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Wong MW, Thalamuthu A, Braidy N, Mather KA, Liu Y, Ciobanu L, Baune BT, Armstrong NJ, Kwok J, Schofield P, Wright MJ, Ames D, Pickford R, Lee T, Poljak A, Sachdev PS. Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins. Elife 2020;9:e58954. [PMID: 32697195 DOI: 10.7554/eLife.58954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hui N, Barter PJ, Ong KL, Rye KA. Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL. Clin Sci (Lond) 2019;133:2221-35. [PMID: 31722013 DOI: 10.1042/CS20190873] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
11 Wei Y, Zhang R, Fang L, Qin X, Cai M, Gu R, Lu J, Wang Y. Hypoglycemic effects and biochemical mechanisms of Pea oligopeptide on high-fat diet and streptozotocin-induced diabetic mice. J Food Biochem 2019;43:e13055. [PMID: 31591749 DOI: 10.1111/jfbc.13055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
12 Shi W, Xing L, Jing L, Tian Y, Yan H, Sun Q, Dai D, Shi L, Liu S. Value of triglyceride-glucose index for the estimation of ischemic stroke risk: Insights from a general population. Nutr Metab Cardiovasc Dis 2020;30:245-53. [PMID: 31744716 DOI: 10.1016/j.numecd.2019.09.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
13 De Matteis S, Scarpi E, Granato AM, Vespasiani-Gentilucci U, La Barba G, Foschi FG, Bandini E, Ghetti M, Marisi G, Cravero P, Gramantieri L, Cucchetti A, Ercolani G, Santini D, Frassineti GL, Faloppi L, Scartozzi M, Cascinu S, Casadei-Gardini A. Role of SIRT-3, p-mTOR and HIF-1α in Hepatocellular Carcinoma Patients Affected by Metabolic Dysfunctions and in Chronic Treatment with Metformin. Int J Mol Sci 2019;20:E1503. [PMID: 30917505 DOI: 10.3390/ijms20061503] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
14 Díaz-Gerevini GT, Daín A, Pasqualini ME, López CB, Eynard AR, Repossi G. Diabetic encephalopathy: beneficial effects of supplementation with fatty acids ω3 and nordihydroguaiaretic acid in a spontaneous diabetes rat model. Lipids Health Dis 2019;18:43. [PMID: 30736810 DOI: 10.1186/s12944-018-0938-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
15 Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int 2018;42:1282-91. [PMID: 29908010 DOI: 10.1002/cbin.11015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
16 Sun J, Mao L, Yang H, Ren D. Critical role for the Tsc1-mTORC1 pathway in β-cell mass in Pdx1-deficient mice. J Endocrinol 2018;238:151-63. [PMID: 29875165 DOI: 10.1530/JOE-18-0015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res. 2018;130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Cited by in Crossref: 94] [Cited by in F6Publishing: 82] [Article Influence: 23.5] [Reference Citation Analysis]
18 Liao N, Zheng Y, Xie H, Zhao B, Zeng Y, Liu X, Liu J. Adipose tissue-derived stem cells ameliorate hyperglycemia, insulin resistance and liver fibrosis in the type 2 diabetic rats. Stem Cell Res Ther 2017;8:286. [PMID: 29258603 DOI: 10.1186/s13287-017-0743-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kong F, Su Z, Guo X, Zeng F, Bi Y. Antidiabetic and Lipid-Lowering Effects of the Polyphenol Extracts from the Leaves of Clausena lansium (Lour.) Skeels on Streptozotocin-Induced Type 2 Diabetic Rats. J Food Sci 2018;83:212-20. [PMID: 29227535 DOI: 10.1111/1750-3841.14004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
20 Liu L, Tang D, Zhao H, Xin X, Aisa HA. Hypoglycemic effect of the polyphenols rich extract from Rose rugosa Thunb on high fat diet and STZ induced diabetic rats. Journal of Ethnopharmacology 2017;200:174-81. [DOI: 10.1016/j.jep.2017.02.022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
21 Zhao D, Yang LY, Wang XH, Yuan SS, Yu CG, Wang ZW, Lang JN, Feng YM. Different relationship between ANGPTL3 and HDL components in female non-diabetic subjects and type-2 diabetic patients. Cardiovasc Diabetol 2016;15:132. [PMID: 27620179 DOI: 10.1186/s12933-016-0450-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]