BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One. 2015;10:e0119034. [PMID: 25793511 DOI: 10.1371/journal.pone.0119034] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Mella R, Schmidt CB, Romagnoli PP, Teske JA, Perez-Leighton C. The Food Environment, Preference, and Experience Modulate the Effects of Exendin-4 on Food Intake and Reward. Obesity (Silver Spring) 2017;25:1844-51. [PMID: 29086500 DOI: 10.1002/oby.21939] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
2 Farr OM, Pilitsi E, Mantzoros CS. Of mice and men: incretin actions in the central nervous system. Metabolism 2019;98:121-35. [PMID: 31173757 DOI: 10.1016/j.metabol.2019.05.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Gaykema RP, Newmyer BA, Ottolini M, Raje V, Warthen DM, Lambeth PS, Niccum M, Yao T, Huang Y, Schulman IG, Harris TE, Patel MK, Williams KW, Scott MM. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J Clin Invest 2017;127:1031-45. [PMID: 28218622 DOI: 10.1172/JCI81335] [Cited by in Crossref: 52] [Cited by in F6Publishing: 38] [Article Influence: 10.4] [Reference Citation Analysis]
4 Dorton HM, Luo S, Monterosso JR, Page KA. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response. Front Psychiatry 2017;8:297. [PMID: 29403396 DOI: 10.3389/fpsyt.2017.00297] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
5 Quast DR, Nauck MA, Schenker N, Menge BA, Kapitza C, Meier JJ. Macronutrient intake, appetite, food preferences and exocrine pancreas function after treatment with short- and long-acting glucagon-like peptide-1 receptor agonists in type 2 diabetes. Diabetes Obes Metab 2021;23:2344-53. [PMID: 34189834 DOI: 10.1111/dom.14477] [Reference Citation Analysis]
6 Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020;5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 28.5] [Reference Citation Analysis]
7 Leon RM, Borner T, Reiner DJ, Stein LM, Lhamo R, De Jonghe BC, Hayes MR. Hypophagia induced by hindbrain serotonin is mediated through central GLP-1 signaling and involves 5-HT2C and 5-HT3 receptor activation. Neuropsychopharmacology 2019;44:1742-51. [PMID: 30959513 DOI: 10.1038/s41386-019-0384-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
8 Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016;65:54-66. [DOI: 10.1016/j.psyneuen.2015.11.021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Article Influence: 10.8] [Reference Citation Analysis]
9 Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci 2016;9:66-70. [PMID: 27066524 DOI: 10.1016/j.cobeha.2016.02.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
10 Jerlhag E. GLP-1 signaling and alcohol-mediated behaviors; preclinical and clinical evidence. Neuropharmacology 2018;136:343-9. [PMID: 29337226 DOI: 10.1016/j.neuropharm.2018.01.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
11 Bernosky-Smith KA, Stanger DB, Trujillo AJ, Mitchell LR, España RA, Bass CE. The GLP-1 agonist exendin-4 attenuates self-administration of sweetened fat on fixed and progressive ratio schedules of reinforcement in rats. Pharmacol Biochem Behav 2016;142:48-55. [PMID: 26701752 DOI: 10.1016/j.pbb.2015.12.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
12 Rendell MS. The safety of albiglutide for the treatment of type 2 diabetes. Expert Opin Drug Saf 2017;16:1089-97. [PMID: 28678550 DOI: 10.1080/14740338.2017.1351538] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
13 Narayanaswami V, Dwoskin LP. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther 2017;170:116-47. [PMID: 27773782 DOI: 10.1016/j.pharmthera.2016.10.015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 11.5] [Reference Citation Analysis]
14 Alhadeff AL, Mergler BD, Zimmer DJ, Turner CA, Reiner DJ, Schmidt HD, Grill HJ, Hayes MR. Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control. Neuropsychopharmacology 2017;42:1471-9. [PMID: 27782127 DOI: 10.1038/npp.2016.246] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 8.0] [Reference Citation Analysis]
15 Lu Z, Ngan MP, Lin G, Yew DTW, Fan X, Andrews PLR, Rudd JA. Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39). Oncotarget 2017;8:98691-707. [PMID: 29228720 DOI: 10.18632/oncotarget.21859] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
16 Hsu TM, Noble EE, Liu CM, Cortella AM, Konanur VR, Suarez AN, Reiner DJ, Hahn JD, Hayes MR, Kanoski SE. A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry 2018;23:1555-65. [PMID: 28461695 DOI: 10.1038/mp.2017.91] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 11.8] [Reference Citation Analysis]
17 Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. Sci China Life Sci 2019;62:771-90. [PMID: 30367342 DOI: 10.1007/s11427-018-9371-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
18 Kobrzycka A, Napora P, Pearson BL, Pierzchała-Koziec K, Szewczyk R, Wieczorek M. Peripheral and central compensatory mechanisms for impaired vagus nerve function during peripheral immune activation. J Neuroinflammation 2019;16:150. [PMID: 31324250 DOI: 10.1186/s12974-019-1544-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
19 Volcko K, Brakey D, Mcnamara T, Meyer M, Mckay N, Santollo J, Daniels D. Control of water intake by a pathway from the nucleus of the solitary tract to the paraventricular hypothalamic nucleus. Appetite 2022. [DOI: 10.1016/j.appet.2022.105943] [Reference Citation Analysis]
20 Vallöf D, Kalafateli AL, Jerlhag E. Brain region specific glucagon-like peptide-1 receptors regulate alcohol-induced behaviors in rodents. Psychoneuroendocrinology 2019;103:284-95. [PMID: 30771711 DOI: 10.1016/j.psyneuen.2019.02.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
21 Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021;13:977. [PMID: 33803053 DOI: 10.3390/nu13030977] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hasib A, Khan D, Craig SL, Gault VA, Flatt PR, Irwin N. Antidiabetic effects and sustained metabolic benefits of sub-chronic co-administration of exendin-4/gastrin and xenin-8-Gln in high fat fed mice. Eur J Pharmacol 2019;865:172733. [PMID: 31614140 DOI: 10.1016/j.ejphar.2019.172733] [Reference Citation Analysis]
23 Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016;216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
24 Fan Z, Yang C, Yang J. A hypothesis: Glucagon-like peptide-1 may play a protective role in diabetic cardiomyopathy. International Journal of Cardiology 2015;197:294-5. [DOI: 10.1016/j.ijcard.2015.06.108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
25 Ferrari F, Scheffel RS, Martins VM, Santos RD, Stein R. Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus and Cardiovascular Disease: The Past, Present, and Future. Am J Cardiovasc Drugs 2021. [PMID: 34958423 DOI: 10.1007/s40256-021-00515-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
26 Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev. 2017;97:411-463. [PMID: 28003328 DOI: 10.1152/physrev.00031.2014] [Cited by in Crossref: 292] [Cited by in F6Publishing: 253] [Article Influence: 58.4] [Reference Citation Analysis]
27 Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav 2017;176:17-25. [PMID: 28315693 DOI: 10.1016/j.physbeh.2017.03.019] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
28 Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 2021;46:101102. [PMID: 33068776 DOI: 10.1016/j.molmet.2020.101102] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
29 Kern KA, Mietlicki-baase EG. Distributed amylin receptor signaling and its influence on motivated behavior. Physiology & Behavior 2020;222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Docherty NG, Le Roux CW. Physiological adaptations following Roux-en-Y gastric bypass and the identification of targets for bariatric mimetic pharmacotherapy. Current Opinion in Pharmacology 2015;25:23-9. [DOI: 10.1016/j.coph.2015.09.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
31 Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020;132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
32 Vestlund J, Jerlhag E. Glucagon-like peptide-1 receptors and sexual behaviors in male mice. Psychoneuroendocrinology 2020;117:104687. [PMID: 32388229 DOI: 10.1016/j.psyneuen.2020.104687] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 López-Ferreras L, Eerola K, Mishra D, Shevchouk OT, Richard JE, Nilsson FH, Hayes MR, Skibicka KP. GLP-1 modulates the supramammillary nucleus-lateral hypothalamic neurocircuit to control ingestive and motivated behavior in a sex divergent manner. Mol Metab 2019;20:178-93. [PMID: 30528281 DOI: 10.1016/j.molmet.2018.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
34 Thomsen M, Dencker D, Wörtwein G, Weikop P, Egecioglu E, Jerlhag E, Fink-Jensen A, Molander A. The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice. Pharmacol Biochem Behav 2017;160:14-20. [PMID: 28778739 DOI: 10.1016/j.pbb.2017.07.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
35 Vallöf D, Maccioni P, Colombo G, Mandrapa M, Jörnulf JW, Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict Biol 2016;21:422-37. [PMID: 26303264 DOI: 10.1111/adb.12295] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 7.2] [Reference Citation Analysis]
36 Chrobok L, Klich JD, Sanetra AM, Jeczmien-Lazur JS, Pradel K, Palus-Chramiec K, Kepczynski M, Piggins HD, Lewandowski MH. Rhythmic neuronal activities of the rat nucleus of the solitary tract are impaired by high-fat diet - implications for daily control of satiety. J Physiol 2021. [PMID: 34490628 DOI: 10.1113/JP281838] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Katsurada K, Nakata M, Saito T, Zhang B, Maejima Y, Nandi SS, Sharma NM, Patel KP, Kario K, Yada T. Central Glucagon-like Peptide-1 Receptor Signaling via Brainstem Catecholamine Neurons Counteracts Hypertension in Spontaneously Hypertensive Rats. Sci Rep 2019;9:12986. [PMID: 31537818 DOI: 10.1038/s41598-019-49364-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
38 Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes 2016; 7(20): 572-598 [PMID: 28031776 DOI: 10.4239/wjd.v7.i20.572] [Cited by in CrossRef: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
39 Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol. 2016;310:R885-R895. [PMID: 27030669 DOI: 10.1152/ajpregu.00520.2015] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 14.3] [Reference Citation Analysis]
40 Vallöf D, Vestlund J, Jerlhag E. Glucagon-like peptide-1 receptors within the nucleus of the solitary tract regulate alcohol-mediated behaviors in rodents. Neuropharmacology 2019;149:124-32. [PMID: 30772374 DOI: 10.1016/j.neuropharm.2019.02.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
41 Ludwig MQ, Cheng W, Gordian D, Lee J, Paulsen SJ, Hansen SN, Egerod KL, Barkholt P, Rhodes CJ, Secher A, Knudsen LB, Pyke C, Myers MG Jr, Pers TH. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat Metab 2021;3:530-45. [PMID: 33767443 DOI: 10.1038/s42255-021-00363-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Sørensen G, Caine SB, Thomsen M. Effects of the GLP-1 Agonist Exendin-4 on Intravenous Ethanol Self-Administration in Mice. Alcohol Clin Exp Res 2016;40:2247-52. [PMID: 27579999 DOI: 10.1111/acer.13199] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
43 Farokhnia M, Browning BD, Crozier ME, Sun H, Akhlaghi F, Leggio L. The glucagon‐like peptide‐1 system is modulated by acute and chronic alcohol exposure: Findings from human laboratory experiments and a post‐mortem brain study. Addiction Biology 2022;27. [DOI: 10.1111/adb.13211] [Reference Citation Analysis]
44 Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2018;33:151-67. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
45 Tabe-Bordbar S, Anastasio TJ. Computational Analysis of the Hypothalamic Control of Food Intake. Front Comput Neurosci 2016;10:27. [PMID: 27199725 DOI: 10.3389/fncom.2016.00027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
46 Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG Jr. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022;4:826-35. [PMID: 35879458 DOI: 10.1038/s42255-022-00606-9] [Reference Citation Analysis]
47 Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021;35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. Eur Eat Disorders Rev 2018;26:551-68. [DOI: 10.1002/erv.2641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
49 Card JP, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol 2018;526:2149-64. [PMID: 30019398 DOI: 10.1002/cne.24482] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
50 Neyens D, Zhao H, Huston NJ, Wayman GA, Ritter RC, Appleyard SM. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents. J Neurosci 2020;40:7054-64. [PMID: 32817248 DOI: 10.1523/JNEUROSCI.1865-19.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
51 Hsu TM, McCutcheon JE, Roitman MF. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Front Psychiatry 2018;9:410. [PMID: 30233430 DOI: 10.3389/fpsyt.2018.00410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
52 Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021;138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Jones S, Luo S, Dorton HM, Yunker AG, Angelo B, Defendis A, Monterosso JR, Page KA. Obesity and Dietary Added Sugar Interact to Affect Postprandial GLP-1 and Its Relationship to Striatal Responses to Food Cues and Feeding Behavior. Front Endocrinol (Lausanne) 2021;12:638504. [PMID: 33868172 DOI: 10.3389/fendo.2021.638504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Basolo A, Heinitz S, Stinson EJ, Begaye B, Hohenadel M, Piaggi P, Krakoff J, Votruba SB. Fasting glucagon-like peptide 1 concentration is associated with lower carbohydrate intake and increases with overeating. J Endocrinol Invest 2019;42:557-66. [PMID: 30284224 DOI: 10.1007/s40618-018-0954-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
55 Vogel H, Wolf S, Rabasa C, Rodriguez-pacheco F, Babaei CS, Stöber F, Goldschmidt J, Dimarchi RD, Finan B, Tschöp MH, Dickson SL, Schürmann A, Skibicka KP. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology 2016;110:396-406. [DOI: 10.1016/j.neuropharm.2016.07.039] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 6.5] [Reference Citation Analysis]
56 Diz-chaves Y, Gil-lozano M, Toba L, Fandiño J, Ogando H, González-matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. Journal of Endocrinology 2016;230:R77-94. [DOI: 10.1530/joe-16-0118] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
57 Richard JE, López-Ferreras L, Anderberg RH, Olandersson K, Skibicka KP. Estradiol is a critical regulator of food-reward behavior. Psychoneuroendocrinology 2017;78:193-202. [PMID: 28214679 DOI: 10.1016/j.psyneuen.2017.01.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
58 Fortin SM, Chartoff EH, Roitman MF. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology 2016;41:906-15. [PMID: 26211731 DOI: 10.1038/npp.2015.220] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
59 Colvin KJ, Killen HS, Kanter MJ, Halperin MC, Engel L, Dickinson MB, Fimmel AI, Holland JG, Currie PJ. Differential effects of intra-ventral tegmental area ghrelin and glucagon-like peptide-1 on the stimulatory action of D-amphetamine and cocaine-induced ethanol intake in male Sprague Dawley rats. Behav Brain Res 2021;421:113726. [PMID: 34954300 DOI: 10.1016/j.bbr.2021.113726] [Reference Citation Analysis]
60 Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015;309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
61 Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2020;14:614884. [PMID: 33536884 DOI: 10.3389/fnbeh.2020.614884] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 López-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, Olandersson K, Taing L, Kanoski SE, Hayes MR, Skibicka KP. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry 2018;23:1157-68. [PMID: 28894301 DOI: 10.1038/mp.2017.187] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 10.4] [Reference Citation Analysis]
63 Mietlicki-Baase EG, McGrath LE, Koch-Laskowski K, Krawczyk J, Pham T, Lhamo R, Reiner DJ, Hayes MR. Hindbrain DPP-IV inhibition improves glycemic control and promotes negative energy balance. Physiol Behav 2017;173:9-14. [PMID: 28119159 DOI: 10.1016/j.physbeh.2017.01.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
64 Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021;45:101163. [PMID: 33453418 DOI: 10.1016/j.molmet.2021.101163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021;110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Reference Citation Analysis]
66 Huang KP, Raybould HE. Estrogen and gut satiety hormones in vagus-hindbrain axis. Peptides 2020;133:170389. [PMID: 32860834 DOI: 10.1016/j.peptides.2020.170389] [Reference Citation Analysis]
67 Kim YK, Kim OY, Song J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front Pharmacol 2020;11:1270. [PMID: 32922295 DOI: 10.3389/fphar.2020.01270] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Konanur VR, Hsu TM, Kanoski SE, Hayes MR, Roitman MF. Phasic dopamine responses to a food-predictive cue are suppressed by the glucagon-like peptide-1 receptor agonist Exendin-4. Physiol Behav 2020;215:112771. [PMID: 31821815 DOI: 10.1016/j.physbeh.2019.112771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
69 Richard JE, Anderberg RH, López-Ferreras L, Olandersson K, Skibicka KP. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Biol Sex Differ 2016;7:6. [PMID: 26779332 DOI: 10.1186/s13293-016-0059-9] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 5.7] [Reference Citation Analysis]
70 le Roux CW, Engström M, Björnfot N, Fändriks L, Docherty NG. Equivalent Increases in Circulating GLP-1 Following Jejunal Delivery of Intact and Hydrolysed Casein: Relevance to Satiety Induction Following Bariatric Surgery. OBES SURG 2016;26:1851-8. [DOI: 10.1007/s11695-015-2005-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
71 Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021;:101351. [PMID: 34626851 DOI: 10.1016/j.molmet.2021.101351] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
72 Woods CA, Guttman ZR, Huang D, Kolaric RA, Rabinowitsch AI, Jones KT, Cabeza de Vaca S, Sclafani A, Carr KD. Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol Behav 2016;159:52-63. [PMID: 26988281 DOI: 10.1016/j.physbeh.2016.03.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
73 Friedrich T, Schalla M, Scharner S, Kühne S, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Research 2019;1715:188-95. [DOI: 10.1016/j.brainres.2019.03.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
74 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Xu F, Lin B, Zheng X, Chen Z, Cao H, Xu H, Liang H, Weng J. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia. 2016;59:1059-1069. [PMID: 26924394 DOI: 10.1007/s00125-016-3896-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
76 Babic I, Gorak A, Engel M, Sellers D, Else P, Osborne AL, Pai N, Huang X, Nealon J, Weston-green K. Liraglutide prevents metabolic side-effects and improves recognition and working memory during antipsychotic treatment in rats. J Psychopharmacol 2018;32:578-90. [DOI: 10.1177/0269881118756061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
77 Douton JE, Norgren R, Grigson PS. Effects of a glucagon-like peptide-1 analog on appetitive and consummatory behavior for rewarding and aversive gustatory stimuli in rats. Physiol Behav 2021;229:113279. [PMID: 33285178 DOI: 10.1016/j.physbeh.2020.113279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Décarie-Spain L, Fisette A, Zhu Z, Yang B, DiMarchi RD, Tschöp MH, Finan B, Fulton S, Clemmensen C. GLP-1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice. Neuropharmacology 2019;151:55-63. [PMID: 30946847 DOI: 10.1016/j.neuropharm.2019.03.035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
79 Jerlhag E. Alcohol-mediated behaviours and the gut-brain axis; with focus on glucagon-like peptide-1. Brain Research 2020;1727:146562. [DOI: 10.1016/j.brainres.2019.146562] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
80 Farkas E, Szilvásy-Szabó A, Ruska Y, Sinkó R, Rasch MG, Egebjerg T, Pyke C, Gereben B, Knudsen LB, Fekete C. Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain. Brain Struct Funct 2021;226:225-45. [PMID: 33341919 DOI: 10.1007/s00429-020-02189-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
81 Mukherjee A, Hum A, Gustafson TJ, Mietlicki-Baase EG. Binge-like palatable food intake in rats reduces preproglucagon in the nucleus tractus solitarius. Physiol Behav 2020;219:112830. [PMID: 32061682 DOI: 10.1016/j.physbeh.2020.112830] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Dibrog AM, Kern KA, Mukherjee A, Przybysz JT, Mietlicki-baase EG. The alpha-7 nicotinic acetylcholine receptor agonist GTS-21 does not affect food intake in rats. Pharmacology Biochemistry and Behavior 2022. [DOI: 10.1016/j.pbb.2022.173444] [Reference Citation Analysis]
83 Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018;9:672. [PMID: 30532733 DOI: 10.3389/fendo.2018.00672] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 16.8] [Reference Citation Analysis]
84 Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019;128:94-105. [PMID: 31002893 DOI: 10.1016/j.neuint.2019.04.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
85 Kabahizi A, Wallace B, Lieu L, Chau D, Dong Y, Hwang ES, Williams KW. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br J Pharmacol 2021. [PMID: 34519026 DOI: 10.1111/bph.15682] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Ji XJ, Hao JW, Li GL, Dong N, Wang XQ, Zhou M, Zhang QH, Yao YM. Exendin-4 Exacerbates Burn-Induced Morbidity in Mice by Activation of the Sympathetic Nervous System. Mediators Inflamm 2019;2019:2750528. [PMID: 30800001 DOI: 10.1155/2019/2750528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
87 Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018;136:271-9. [PMID: 29129776 DOI: 10.1016/j.neuropharm.2017.11.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
88 Vallöf D, Kalafateli AL, Jerlhag E. Long-term treatment with a glucagon-like peptide-1 receptor agonist reduces ethanol intake in male and female rats. Transl Psychiatry 2020;10:238. [PMID: 32678077 DOI: 10.1038/s41398-020-00923-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]