BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Danneels EL, Gerlo S, Heyninck K, Van Craenenbroeck K, De Bosscher K, Haegeman G, de Graaf DC. How the venom from the ectoparasitoid Wasp nasonia vitripennis exhibits anti-inflammatory properties on mammalian cell lines. PLoS One 2014;9:e96825. [PMID: 24821138 DOI: 10.1371/journal.pone.0096825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Dittmer J, van Opstal EJ, Shropshire JD, Bordenstein SR, Hurst GD, Brucker RM. Disentangling a Holobiont - Recent Advances and Perspectives in Nasonia Wasps. Front Microbiol 2016;7:1478. [PMID: 27721807 DOI: 10.3389/fmicb.2016.01478] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
2 Chen X, Chen H, Zhao M, Yang Z, Feng Y. Insect industrialization and prospect in commerce: A case of China. Entomological Research. [DOI: 10.1111/1748-5967.12576] [Reference Citation Analysis]
3 Siebert AL, Doucette LA, Simpson-haidaris P, Werren JH. Parasitoid wasp venom elevates sorbitol and alters expression of metabolic genes in human kidney cells. Toxicon 2019;161:57-64. [DOI: 10.1016/j.toxicon.2018.11.308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
4 Heavner ME, Hudgins AD, Rajwani R, Morales J, Govind S. Harnessing the natural Drosophila-parasitoid model for integrating insect immunity with functional venomics. Curr Opin Insect Sci 2014;6:61-7. [PMID: 25642411 DOI: 10.1016/j.cois.2014.09.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Poirié M, Colinet D, Gatti J. Insights into function and evolution of parasitoid wasp venoms. Current Opinion in Insect Science 2014;6:52-60. [DOI: 10.1016/j.cois.2014.10.004] [Cited by in Crossref: 54] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
6 Shaik HA, Mishra A, Kodrík D. Beneficial effect of adipokinetic hormone on neuromuscular paralysis in insect body elicited by braconid wasp venom. Comp Biochem Physiol C Toxicol Pharmacol 2017;196:11-8. [PMID: 28257925 DOI: 10.1016/j.cbpc.2017.02.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
7 Danneels EL, Formesyn EM, de Graaf DC. Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools. Toxins (Basel) 2015;7:2051-70. [PMID: 26046700 DOI: 10.3390/toxins7062051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
8 Martinson EO, Martinson VG, Edwards R, Mrinalini, Werren JH. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps. Mol Biol Evol 2016;33:1042-52. [PMID: 26715630 DOI: 10.1093/molbev/msv348] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
9 Sim AD, Wheeler D. The venom gland transcriptome of the parasitoid wasp Nasonia vitripennis highlights the importance of novel genes in venom function. BMC Genomics 2016;17:571. [PMID: 27503142 DOI: 10.1186/s12864-016-2924-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
10 Abd El-Wahed A, Yosri N, Sakr HH, Du M, Algethami AFM, Zhao C, Abdelazeem AH, Tahir HE, Masry SHD, Abdel-Daim MM, Musharraf SG, El-Garawani I, Kai G, Al Naggar Y, Khalifa SAM, El-Seedi HR. Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021;13:206. [PMID: 33809401 DOI: 10.3390/toxins13030206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Chae JH, Oh J, Lim JS, Jeong YA, Yun HS, Jang CH, Kim HJ, Kim J. Wasp Venom Ameliorates Scopolamine-Induced Learning and Memory Impairment in Mice. Toxins 2022;14:256. [DOI: 10.3390/toxins14040256] [Reference Citation Analysis]
12 Park SJ, Kim K, Baik M, Koh YH. Sericulture and the edible-insect industry can help humanity survive: insects are more than just bugs, food, or feed. Food Sci Biotechnol. [DOI: 10.1007/s10068-022-01090-3] [Reference Citation Analysis]
13 Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJ, Izzo AA, Maffia P, Mayer A, Mazars C, Newman DJ, Nic Lughadha E, Pimenta A, Parra J, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022;:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Reference Citation Analysis]
14 Martinson EO, Mrinalini, Kelkar YD, Chang CH, Werren JH. The Evolution of Venom by Co-option of Single-Copy Genes. Curr Biol 2017;27:2007-2013.e8. [PMID: 28648823 DOI: 10.1016/j.cub.2017.05.032] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
15 von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014;6:3488-551. [PMID: 25533518 DOI: 10.3390/toxins6123488] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 8.8] [Reference Citation Analysis]
16 Mrinalini, Werren JH. Parasitoid Wasps and Their Venoms. In: Gopalakrishnakone P, Malhotra A, editors. Evolution of Venomous Animals and Their Toxins. Dordrecht: Springer Netherlands; 2015. pp. 1-26. [DOI: 10.1007/978-94-007-6727-0_2-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
17 Dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021;27:e20200152. [PMID: 34795699 DOI: 10.1590/1678-9199-JVATITD-2020-0152] [Reference Citation Analysis]
18 Dutta P, Sahu RK, Dey T, Lahkar MD, Manna P, Kalita J. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chem Biol Interact 2019;313:108824. [PMID: 31542397 DOI: 10.1016/j.cbi.2019.108824] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
19 Hall F, Reddivari L, Liceaga AM. Identification and Characterization of Edible Cricket Peptides on Hypertensive and Glycemic In Vitro Inhibition and Their Anti-Inflammatory Activity on RAW 264.7 Macrophage Cells. Nutrients 2020;12:E3588. [PMID: 33238450 DOI: 10.3390/nu12113588] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Muller JAI, Lencina JDS, Souza MIL, Mortari MR, Toffoli-Kadri MC. Macrophage activation in vitro by Parachartergus fraternus venom. Toxicon 2021;198:48-53. [PMID: 33940047 DOI: 10.1016/j.toxicon.2021.04.028] [Reference Citation Analysis]
21 Avalo Z, Barrera MC, Agudelo-delgado M, Tobón GJ, Cañas CA. Biological Effects of Animal Venoms on the Human Immune System. Toxins 2022;14:344. [DOI: 10.3390/toxins14050344] [Reference Citation Analysis]