BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hampton M, Melvin RG, Andrews MT. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS One 2013;8:e85157. [PMID: 24386461 DOI: 10.1371/journal.pone.0085157] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Han JS, Jeon YG, Oh M, Lee G, Nahmgoong H, Han SM, Choi J, Kim YY, Shin KC, Kim J, Jo K, Choe SS, Park EJ, Kim S, Kim JB. Adipocyte HIF2α functions as a thermostat via PKA Cα regulation in beige adipocytes. Nat Commun 2022;13:3268. [PMID: 35672324 DOI: 10.1038/s41467-022-30925-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Pinho GM, Martin JGA, Farrell C, Haghani A, Zoller JA, Zhang J, Snir S, Pellegrini M, Wayne RK, Blumstein DT, Horvath S. Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol 2022;6:418-26. [PMID: 35256811 DOI: 10.1038/s41559-022-01679-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Logan SM, Storey KB. Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator. Cell Signal 2021;82:109975. [PMID: 33711429 DOI: 10.1016/j.cellsig.2021.109975] [Reference Citation Analysis]
4 Jiao D, Ji K, Liu H, Wang W, Wu X, Zhou J, Zhang Y, Zhou H, Hickford JGH, Degen AA, Yang G. Transcriptome Analysis Reveals Genes Involved in Thermogenesis in Two Cold-Exposed Sheep Breeds. Genes (Basel) 2021;12:375. [PMID: 33800742 DOI: 10.3390/genes12030375] [Reference Citation Analysis]
5 Logan SM, Storey KB. MicroRNA expression patterns in the brown fat of hibernating 13-lined ground squirrels. Genomics 2021;113:769-81. [PMID: 33529780 DOI: 10.1016/j.ygeno.2021.01.017] [Reference Citation Analysis]
6 Gignoux-Wolfsohn SA, Pinsky ML, Kerwin K, Herzog C, Hall M, Bennett AB, Fefferman NH, Maslo B. Genomic signatures of selection in bats surviving white-nose syndrome. Mol Ecol 2021. [PMID: 33476441 DOI: 10.1111/mec.15813] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms. Front Physiol 2020;11:623665. [PMID: 33551846 DOI: 10.3389/fphys.2020.623665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
8 Lin JQ, Yu J, Jiang H, Zhang Y, Wan QH, Fang SG. Multi-omics analysis reveals that natural hibernation is crucial for oocyte maturation in the female Chinese alligator. BMC Genomics 2020;21:774. [PMID: 33167853 DOI: 10.1186/s12864-020-07187-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
9 Singhal NS, Bai M, Lee EM, Luo S, Cook KR, Ma DK. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. Elife 2020;9:e55578. [PMID: 33050999 DOI: 10.7554/eLife.55578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XIV. Global Metabolomics Screen Reveals Brown Adipose Tissue Changes in Amino Acids, Catecholamines, and Antioxidants After Short-Term Restriction in C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2020;75:218-29. [PMID: 31220223 DOI: 10.1093/gerona/glz023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
11 Li Y, Schwalie PC, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B, Klingenspor M. Systems-Genetics-Based Inference of a Core Regulatory Network Underlying White Fat Browning. Cell Rep 2019;29:4099-4113.e5. [PMID: 31851936 DOI: 10.1016/j.celrep.2019.11.053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Logan SM, Storey KB. Inflammasome signaling could be used to sense and respond to endogenous damage in brown but not white adipose tissue of a hibernating ground squirrel. Dev Comp Immunol 2021;114:103819. [PMID: 32781003 DOI: 10.1016/j.dci.2020.103819] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Lin JQ, Huang YY, Bian MY, Wan QH, Fang SG. A Unique Energy-Saving Strategy during Hibernation Revealed by Multi-Omics Analysis in the Chinese Alligator. iScience 2020;23:101202. [PMID: 32534442 DOI: 10.1016/j.isci.2020.101202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Hu CK, Wang W, Brind'Amour J, Singh PP, Reeves GA, Lorincz MC, Alvarado AS, Brunet A. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 2020;367:870-4. [PMID: 32079766 DOI: 10.1126/science.aaw2601] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
15 Lynes MD, Kodani SD, Tseng YH. Lipokines and Thermogenesis. Endocrinology 2019;160:2314-25. [PMID: 31504387 DOI: 10.1210/en.2019-00337] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
16 Jansen HT, Trojahn S, Saxton MW, Quackenbush CR, Evans Hutzenbiler BD, Nelson OL, Cornejo OE, Robbins CT, Kelley JL. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun Biol 2019;2:336. [PMID: 31531397 DOI: 10.1038/s42003-019-0574-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
17 Hadj-Moussa H, Watts AJ, Storey KB. Genes of the undead: hibernation and death display different gene profiles. FEBS Lett 2019;593:527-32. [PMID: 30767213 DOI: 10.1002/1873-3468.13338] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
18 Andrews MT. Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology 2019;222:jeb160606. [DOI: 10.1242/jeb.160606] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
19 Oliver SR, Anderson KJ, Hunstiger MM, Andrews MT. Turning down the heat: Down-regulation of sarcolipin in a hibernating mammal. Neurosci Lett 2019;696:13-9. [PMID: 30528880 DOI: 10.1016/j.neulet.2018.11.059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Bonis A, Anderson L, Talhouarne G, Schueller E, Unke J, Krus C, Stokka J, Koepke A, Lehrer B, Schuh A, Andersen JJ, Cooper S. Cardiovascular resistance to thrombosis in 13-lined ground squirrels. J Comp Physiol B 2019;189:167-77. [PMID: 30317383 DOI: 10.1007/s00360-018-1186-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P, Moustaid-Moussa N. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:1523-31. [PMID: 30261280 DOI: 10.1016/j.bbalip.2018.09.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
22 Gautier C, Bothorel B, Ciocca D, Valour D, Gaudeau A, Dupré C, Lizzo G, Brasseur C, Riest-Fery I, Stephan JP, Nosjean O, Boutin JA, Guénin SP, Simonneaux V. Gene expression profiling during hibernation in the European hamster. Sci Rep 2018;8:13167. [PMID: 30177816 DOI: 10.1038/s41598-018-31506-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
23 Field KA, Sewall BJ, Prokkola JM, Turner GG, Gagnon MF, Lilley TM, Paul White J, Johnson JS, Hauer CL, Reeder DM. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol Ecol 2018. [PMID: 30080945 DOI: 10.1111/mec.14827] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
24 Blanco MB, Dausmann KH, Faherty SL, Yoder AD. Tropical heterothermy is “cool”: The expression of daily torpor and hibernation in primates. Evol Anthropol 2018;27:147-61. [DOI: 10.1002/evan.21588] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
25 Martinez B, Khudyakov J, Rutherford K, Crocker DE, Gemmell N, Ortiz RM. Adipose transcriptome analysis provides novel insights into molecular regulation of prolonged fasting in northern elephant seal pups. Physiol Genomics 2018;50:495-503. [PMID: 29625017 DOI: 10.1152/physiolgenomics.00002.2018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
26 Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ, Xu Y, Zhou H, Chen J, Merriman DK, Xie Z, Mallon BS, Li W. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 2018;173:851-863.e16. [PMID: 29576452 DOI: 10.1016/j.cell.2018.03.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 11.5] [Reference Citation Analysis]
27 Ballinger MA, Andrews MT. Nature's fat-burning machine: brown adipose tissue in a hibernating mammal. J Exp Biol 2018;221:jeb162586. [PMID: 29514878 DOI: 10.1242/jeb.162586] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
28 Jastroch M, Oelkrug R, Keipert S. Insights into brown adipose tissue evolution and function from non-model organisms. J Exp Biol 2018;221:jeb169425. [PMID: 29514888 DOI: 10.1242/jeb.169425] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
29 Soto M, Orliaguet L, Reyzer ML, Manier ML, Caprioli RM, Kahn CR. Pyruvate induces torpor in obese mice. Proc Natl Acad Sci U S A 2018;115:810-5. [PMID: 29311303 DOI: 10.1073/pnas.1717507115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
30 Kriszt R, Arai S, Itoh H, Lee MH, Goralczyk AG, Ang XM, Cypess AM, White AP, Shamsi F, Xue R, Lee JY, Lee SC, Hou Y, Kitaguchi T, Sudhaharan T, Ishiwata S, Lane EB, Chang YT, Tseng YH, Suzuki M, Raghunath M. Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Sci Rep 2017;7:1383. [PMID: 28469146 DOI: 10.1038/s41598-017-00291-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 6.6] [Reference Citation Analysis]
31 Bogren LK, Grabek KR, Barsh GS, Martin SL. Comparative tissue transcriptomics highlights dynamic differences among tissues but conserved metabolic transcript prioritization in preparation for arousal from torpor. J Comp Physiol B 2017;187:735-48. [PMID: 28332019 DOI: 10.1007/s00360-017-1073-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
32 MacCannell A, Sinclair K, Friesen-Waldner L, McKenzie CA, Staples JF. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure. J Comp Physiol B 2017;187:759-67. [PMID: 28324157 DOI: 10.1007/s00360-017-1075-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
33 Cubuk C, Kemmling J, Fabrizius A, Herwig A. Transcriptome Analysis of Hypothalamic Gene Expression during Daily Torpor in Djungarian Hamsters (Phodopus sungorus). Front Neurosci 2017;11:122. [PMID: 28348515 DOI: 10.3389/fnins.2017.00122] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
34 McFarlane SV, Mathers KE, Staples JF. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2017;312:R434-42. [PMID: 28077390 DOI: 10.1152/ajpregu.00316.2016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Frigault JJ, Morin MD, Morin PJ. Differential expression and emerging functions of non-coding RNAs in cold adaptation. J Comp Physiol B 2017;187:19-28. [PMID: 27866230 DOI: 10.1007/s00360-016-1049-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
36 Faherty SL, Villanueva-Cañas JL, Klopfer PH, Albà MM, Yoder AD. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius. Genome Biol Evol 2016;8:2413-26. [PMID: 27412611 DOI: 10.1093/gbe/evw163] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
37 Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol Regul Integr Comp Physiol 2016;311:R325-36. [PMID: 27225952 DOI: 10.1152/ajpregu.00463.2015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
38 Cooper ST, Sell SS, Fahrenkrog M, Wilkinson K, Howard DR, Bergen H, Cruz E, Cash SE, Andrews MT, Hampton M. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels. Physiol Genomics 2016;48:513-25. [PMID: 27207617 DOI: 10.1152/physiolgenomics.00120.2015] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
39 Secor SM, Carey HV. Integrative Physiology of Fasting. Compr Physiol. 2016;6:773-825. [PMID: 27065168 DOI: 10.1002/cphy.c150013] [Cited by in Crossref: 62] [Cited by in F6Publishing: 79] [Article Influence: 10.3] [Reference Citation Analysis]
40 Staples JF. Metabolic Flexibility: Hibernation, Torpor, and Estivation. Compr Physiol 2016;6:737-71. [PMID: 27065167 DOI: 10.1002/cphy.c140064] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 10.2] [Reference Citation Analysis]
41 Anderson KJ, Vermillion KL, Jagtap P, Johnson JE, Griffin TJ, Andrews MT. Proteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype. J Proteome Res 2016;15:1253-61. [DOI: 10.1021/acs.jproteome.5b01138] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
42 Vermillion KL, Jagtap P, Johnson JE, Griffin TJ, Andrews MT. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics. J Proteome Res 2015;14:4792-804. [DOI: 10.1021/acs.jproteome.5b00575] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
43 Field KA, Johnson JS, Lilley TM, Reeder SM, Rogers EJ, Behr MJ, Reeder DM. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis. PLoS Pathog 2015;11:e1005168. [PMID: 26426272 DOI: 10.1371/journal.ppat.1005168] [Cited by in Crossref: 71] [Cited by in F6Publishing: 58] [Article Influence: 10.1] [Reference Citation Analysis]
44 Lovegrove BG, Lobban KD, Levesque DL. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc Biol Sci 2014;281:20141304. [PMID: 25339721 DOI: 10.1098/rspb.2014.1304] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
45 van Breukelen F, Martin SL. The Hibernation Continuum: Physiological and Molecular Aspects of Metabolic Plasticity in Mammals. Physiology 2015;30:273-81. [DOI: 10.1152/physiol.00010.2015] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 8.0] [Reference Citation Analysis]
46 Jiang S, Gao Y, Zhang Y, Liu K, Wang H, Goswami N. The research on the formation mechanism of extraordinary oxidative capacity of skeletal muscle in hibernating ground squirrels (Spermophilus dauricus). Zool Stud 2015;54:e46. [PMID: 31966133 DOI: 10.1186/s40555-015-0124-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
47 Lanaspa MA, Epperson LE, Li N, Cicerchi C, Garcia GE, Roncal-Jimenez CA, Trostel J, Jain S, Mant CT, Rivard CJ, Ishimoto T, Shimada M, Sanchez-Lozada LG, Nakagawa T, Jani A, Stenvinkel P, Martin SL, Johnson RJ. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel. PLoS One 2015;10:e0123509. [PMID: 25856396 DOI: 10.1371/journal.pone.0123509] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
48 Xing X, Yang M, Wang DH. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol. 2015;184:105-112. [PMID: 25711781 DOI: 10.1016/j.cbpa.2015.02.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
49 Grabek KR, Diniz Behn C, Barsh GS, Hesselberth JR, Martin SL. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator. Elife 2015;4. [PMID: 25626169 DOI: 10.7554/eLife.04517] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
50 Vermillion KL, Anderson KJ, Hampton M, Andrews MT. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genomics 2015;47:58-74. [PMID: 25572546 DOI: 10.1152/physiolgenomics.00108.2014] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
51 Christian M. Transcriptional fingerprinting of "browning" white fat identifies NRG4 as a novel adipokine. Adipocyte 2015;4:50-4. [PMID: 26167402 DOI: 10.4161/adip.29853] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
52 Wu CW, Biggar KK, Storey KB. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels. Genomics Proteomics Bioinformatics 2014;12:284-91. [PMID: 25526980 DOI: 10.1016/j.gpb.2014.08.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
53 Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, Zhu Q, Lu Z, Wang J, Audouze K, Gupta R, Madsen L, Kristiansen K, Hansen JB. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2015;308:E380-92. [PMID: 25516548 DOI: 10.1152/ajpendo.00277.2014] [Cited by in Crossref: 80] [Cited by in F6Publishing: 78] [Article Influence: 10.0] [Reference Citation Analysis]
54 Biggar KK, Storey KB. New Approaches to Comparative and Animal Stress Biology Research in the Post-genomic Era: A Contextual Overview. Comput Struct Biotechnol J 2014;11:138-46. [PMID: 25408848 DOI: 10.1016/j.csbj.2014.09.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
55 Prado-Lòpez S, Duffy MM, Baustian C, Alagesan S, Hanley SA, Stocca A, Griffin MD, Ceredig R. The influence of hypoxia on the differentiation capacities and immunosuppressive properties of clonal mouse mesenchymal stromal cell lines. Immunol Cell Biol 2014;92:612-23. [PMID: 24777310 DOI: 10.1038/icb.2014.30] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]