BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peterson JD, Steffen JE, Reinert LK, Cobine PA, Appel A, Rollins-Smith L, Mendonça MT. Host stress response is important for the pathogenesis of the deadly amphibian disease, Chytridiomycosis, in Litoria caerulea. PLoS One 2013;8:e62146. [PMID: 23630628 DOI: 10.1371/journal.pone.0062146] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Brannelly LA, Webb RJ, Skerratt LF, Berger L, Bavoil P. Effects of chytridiomycosis on hematopoietic tissue in the spleen, kidney and bone marrow in three diverse amphibian species. Pathogens and Disease 2016;74:ftw069. [DOI: 10.1093/femspd/ftw069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
2 Kindermann C, Narayan EJ, Hero JM. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species? Comp Biochem Physiol A Mol Integr Physiol 2017;203:220-6. [PMID: 27712921 DOI: 10.1016/j.cbpa.2016.09.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
3 Gardner ST, Assis VR, Smith KM, Appel AG, Mendonça MT. Innate immunity of Florida cane toads: how dispersal has affected physiological responses to LPS. J Comp Physiol B 2020;190:317-27. [PMID: 32189063 DOI: 10.1007/s00360-020-01272-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
4 Agugliaro J, Lind CM, Lorch JM, Farrell TM, Hawley D. An emerging fungal pathogen is associated with increased resting metabolic rate and total evaporative water loss rate in a winter‐active snake. Funct Ecol 2019;34:486-96. [DOI: 10.1111/1365-2435.13487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
5 Martel A, Pasmans F, Fisher MC, Grogan LF, Skerratt LF, Berger L. Chytridiomycosis. In: Seyedmousavi S, de Hoog GS, Guillot J, Verweij PE, editors. Emerging and Epizootic Fungal Infections in Animals. Cham: Springer International Publishing; 2018. pp. 309-35. [DOI: 10.1007/978-3-319-72093-7_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Poorten TJ, Rosenblum EB. Comparative study of host response to chytridiomycosis in a susceptible and a resistant toad species. Mol Ecol 2016;25:5663-79. [PMID: 27696594 DOI: 10.1111/mec.13871] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
7 Gabor C, Forsburg Z, Vörös J, Serrano-laguna C, Bosch J. Differences in chytridiomycosis infection costs between two amphibian species from Central Europe. Amphib Reptilia 2017;38:250-6. [DOI: 10.1163/15685381-00003099] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
8 Holden WM, Ebert AR, Canning PF, Rollins-Smith LA. Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses. Appl Environ Microbiol 2014;80:4034-41. [PMID: 24771024 DOI: 10.1128/AEM.04171-13] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
9 Greenspan SE, Bower DS, Webb RJ, Berger L, Rudd D, Schwarzkopf L, Alford RA. White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Dev Comp Immunol 2017;77:280-6. [PMID: 28870450 DOI: 10.1016/j.dci.2017.08.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
10 Robak MJ, Reinert LK, Rollins-smith LA, Richards-zawacki CL. Out in the cold and sick: Low temperatures and fungal infections impair a frog's skin defenses. Journal of Experimental Biology. [DOI: 10.1242/jeb.209445] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
11 Hammond TT, Blackwood PE, Shablin SA, Richards-zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. General and Comparative Endocrinology 2020;285:113269. [DOI: 10.1016/j.ygcen.2019.113269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI. Immunological Aspects of Chytridiomycosis. J Fungi (Basel) 2020;6:E234. [PMID: 33086692 DOI: 10.3390/jof6040234] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Venesky MD, Hess A, Demarchi JA, Weil A, Murone J, Hickerson CM, Anthony CD. Morph-specific differences in disease prevalence and pathogen-induced mortality in a terrestrial polymorphic salamander: Differential effects of disease on salamander color morphs. J Zool 2015;295:279-85. [DOI: 10.1111/jzo.12208] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
14 Gabor CR, Fisher MC, Bosch J. Elevated Corticosterone Levels and Changes in Amphibian Behavior Are Associated with Batrachochytrium dendrobatidis (Bd) Infection and Bd Lineage. PLoS One 2015;10:e0122685. [PMID: 25893675 DOI: 10.1371/journal.pone.0122685] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
15 Rollins-smith LA. Amphibian immunity–stress, disease, and climate change. Developmental & Comparative Immunology 2017;66:111-9. [DOI: 10.1016/j.dci.2016.07.002] [Cited by in Crossref: 84] [Cited by in F6Publishing: 62] [Article Influence: 16.8] [Reference Citation Analysis]
16 Madden KS. Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals. Dev Comp Immunol 2017;66:92-7. [PMID: 27119982 DOI: 10.1016/j.dci.2016.04.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ohmer ME, Cramp RL, White CR, Franklin CE, Moore I. Skin sloughing rate increases with chytrid fungus infection load in a susceptible amphibian. Funct Ecol 2014;29:674-82. [DOI: 10.1111/1365-2435.12370] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Buck JC, Rohr JR, Blaustein AR. Effects of nutrient supplementation on host-pathogen dynamics of the amphibian chytrid fungus: a community approach. Freshw Biol 2016;61:110-20. [PMID: 28956554 DOI: 10.1111/fwb.12685] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
19 Grogan LF, Skerratt LF, Berger L, Cashins SD, Trengove RD, Gummer JPA. Chytridiomycosis causes catastrophic organism-wide metabolic dysregulation including profound failure of cellular energy pathways. Sci Rep 2018;8:8188. [PMID: 29844538 DOI: 10.1038/s41598-018-26427-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
20 Barnhart KL, Bletz MC, LaBumbard BC, Tokash-Peters AG, Gabor CR, Woodhams DC. Batrachochytrium salamandrivorans ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY. Anim Conserv 2020;23:533-46. [PMID: 33071596 DOI: 10.1111/acv.12565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Eskew EA, Shock BC, LaDouceur EEB, Keel K, Miller MR, Foley JE, Todd BD. Gene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis. R Soc Open Sci 2018;5:170910. [PMID: 29515828 DOI: 10.1098/rsos.170910] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
22 Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI. Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Front Immunol 2018;9:2536. [PMID: 30473694 DOI: 10.3389/fimmu.2018.02536] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
23 Blaustein A, Urbina J, Snyder P, Reynolds E, Dang T, Hoverman J, Han B, Olson D, Searle C, Hambalek N. Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. Diversity 2018;10:81. [DOI: 10.3390/d10030081] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
24 Zerr KM, Imlay TL, Horn AG, Slater KY. Sick of attention: The effect of a stress‐related disease on juvenile green sea turtle behaviour in the face of intense and prolonged tourism. Aquatic Conservation 2022;32:430-41. [DOI: 10.1002/aqc.3773] [Reference Citation Analysis]
25 Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad ( Rhinella schneideri ): TITON ET AL. J Exp Zool 2017;327:127-38. [DOI: 10.1002/jez.2078] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
26 Klop-toker KL, Valdez JW, Stockwell MP, Edgar ME, Fardell L, Clulow S, Clulow J, Mahony MJ. Assessing host response to disease treatment: how chytrid-susceptible frogs react to increased water salinity. Wildl Res 2017;44:648. [DOI: 10.1071/wr16145] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
27 McClelland SJ, Woodley SK. Water-borne corticosterone assay is a valid method in some but not all life-history stages in Northern Leopard Frogs. Gen Comp Endocrinol 2021;312:113858. [PMID: 34302845 DOI: 10.1016/j.ygcen.2021.113858] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Santymire RM, Sacerdote-velat AB, Gygli A, Keinath DA, Poo S, Hinkson KM, Mckeag EM, Cooke S. Using dermal glucocorticoids to determine the effects of disease and environment on the critically endangered Wyoming toad. Conservation Physiology 2021;9:coab093. [DOI: 10.1093/conphys/coab093] [Reference Citation Analysis]
29 Kaiser K, Devito J, Jones CG, Marentes A, Perez R, Umeh L, Weickum RM, McGovern KE, Wilson EH, Saltzman W. Effects of anthropogenic noise on endocrine and reproductive function in White's treefrog, Litoria caerulea. Conserv Physiol 2015;3:cou061. [PMID: 27293682 DOI: 10.1093/conphys/cou061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
30 Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol 2013;61:146-57. [PMID: 24021881 DOI: 10.1016/j.fgb.2013.08.016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
31 Savage AE, Terrell KA, Gratwicke B, Mattheus NM, Augustine L, Fleischer RC. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen. Conserv Physiol 2016;4:cow011. [PMID: 27293759 DOI: 10.1093/conphys/cow011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
32 Wu NC, Cramp RL, Franklin CE. Body size influences energetic and osmoregulatory costs in frogs infected with Batrachochytrium dendrobatidis. Sci Rep 2018;8:3739. [PMID: 29487313 DOI: 10.1038/s41598-018-22002-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Gauberg J, Wu N, Cramp RL, Kelly SP, Franklin CE. A lethal fungal pathogen directly alters tight junction proteins in the skin of a susceptible amphibian. Journal of Experimental Biology. [DOI: 10.1242/jeb.192245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KP. Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun 2015;83:4565-70. [PMID: 26371122 DOI: 10.1128/IAI.00877-15] [Cited by in Crossref: 26] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
35 Wu NC, Cramp RL, Ohmer MEB, Franklin CE. Epidermal epidemic: unravelling the pathogenesis of chytridiomycosis. J Exp Biol 2019;222:jeb191817. [PMID: 30559300 DOI: 10.1242/jeb.191817] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
36 Searle CL, Belden LK, Du P, Blaustein AR. Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. J Exp Zool A Ecol Genet Physiol 2014;321:243-53. [PMID: 24610865 DOI: 10.1002/jez.1855] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
37 Goff CB, Walls SC, Rodriguez D, Gabor CR. Changes in physiology and microbial diversity in larval ornate chorus frogs are associated with habitat quality. Conserv Physiol 2020;8:coaa047. [PMID: 32577287 DOI: 10.1093/conphys/coaa047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Gervasi SS, Hunt EG, Lowry M, Blaustein AR, Wilson R. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian‐chytrid fungus system. Funct Ecol 2014;28:569-78. [DOI: 10.1111/1365-2435.12194] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
39 Friant S, Ziegler TE, Goldberg TL. Changes in physiological stress and behaviour in semi-free-ranging red-capped mangabeys (Cercocebus torquatus) following antiparasitic treatment. Proc Biol Sci 2016;283:20161201. [PMID: 27466454 DOI: 10.1098/rspb.2016.1201] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
40 Young S, Whitehorn P, Berger L, Skerratt LF, Speare R, Garland S, Webb R. Defects in host immune function in tree frogs with chronic chytridiomycosis. PLoS One 2014;9:e107284. [PMID: 25211333 DOI: 10.1371/journal.pone.0107284] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
41 Titon SCM, de Assis VR, Titon B, Barsotti AMG, Flanagan SP, Gomes FR. Calling rate, corticosterone plasma levels and immunocompetence of Hypsiboas albopunctatus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2016;201:53-60. [DOI: 10.1016/j.cbpa.2016.06.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
42 Gabor CR, Knutie SA, Roznik EA, Rohr JR. Are the adverse effects of stressors on amphibians mediated by their effects on stress hormones? Oecologia 2018;186:393-404. [DOI: 10.1007/s00442-017-4020-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]