BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar R, Bose A, Mallick BN. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One. 2012;7:e42059. [PMID: 22905114 DOI: 10.1371/journal.pone.0042059] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Bañuelos S, Best J, Huguet G, Prieto-Langarica A, Pyzza PB, Wilson S. Modeling the long term effects of thermoregulation on human sleep. J Theor Biol 2020;493:110208. [PMID: 32087179 DOI: 10.1016/j.jtbi.2020.110208] [Reference Citation Analysis]
2 Schellenberger Costa M, Weigenand A, Ngo HV, Marshall L, Born J, Martinetz T, Claussen JC. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation. PLoS Comput Biol 2016;12:e1005022. [PMID: 27584827 DOI: 10.1371/journal.pcbi.1005022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
3 Yadav RK, Khanday MA, Mallick BN. Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats. Behav Brain Res 2019;376:112169. [PMID: 31442548 DOI: 10.1016/j.bbr.2019.112169] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
5 Dunmyre JR, Mashour GA, Booth V. Coupled flip-flop model for REM sleep regulation in the rat. PLoS One 2014;9:e94481. [PMID: 24722577 DOI: 10.1371/journal.pone.0094481] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
6 Mehta R, Singh A, Mallick BN. Disciplined sleep for healthy living: Role of noradrenaline. World J Neurol 2017; 7(1): 6-23 [DOI: 10.5316/wjn.v7.i1.6] [Cited by in CrossRef: 1] [Article Influence: 0.2] [Reference Citation Analysis]
7 Mader EC Jr, Mader AC. Sleep as spatiotemporal integration of biological processes that evolved to periodically reinforce neurodynamic and metabolic homeostasis: The 2m3d paradigm of sleep. J Neurol Sci 2016;367:63-80. [PMID: 27423566 DOI: 10.1016/j.jns.2016.05.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
8 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
9 Li Q, Song JL, Li SH, Westover MB, Zhang R. Effects of Cholinergic Neuromodulation on Thalamocortical Rhythms During NREM Sleep: A Model Study. Front Comput Neurosci 2019;13:100. [PMID: 32038215 DOI: 10.3389/fncom.2019.00100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Mehta R, Giri S, Mallick BN. REM sleep loss-induced elevated noradrenaline could predispose an individual to psychosomatic disorders: a review focused on proposal for prediction, prevention, and personalized treatment. EPMA J 2020;11:529-49. [PMID: 33240449 DOI: 10.1007/s13167-020-00222-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Yang DP, McKenzie-Sell L, Karanjai A, Robinson PA. Wake-sleep transition as a noisy bifurcation. Phys Rev E 2016;94:022412. [PMID: 27627340 DOI: 10.1103/PhysRevE.94.022412] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
12 Rosales-Lagarde A, Rodriguez-Torres EE, Itzá-Ortiz BA, Miramontes P, Vázquez-Tagle G, Enciso-Alva JC, García-Muñoz V, Cubero-Rego L, Pineda-Sánchez JE, Martínez-Alcalá CI, Lopez-Noguerola JS. The Color of Noise and Weak Stationarity at the NREM to REM Sleep Transition in Mild Cognitive Impaired Subjects. Front Psychol 2018;9:1205. [PMID: 30065684 DOI: 10.3389/fpsyg.2018.01205] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Perez-Atencio L, Garcia-Aracil N, Fernandez E, Barrio LC, Barios JA. A four-state Markov model of sleep-wakefulness dynamics along light/dark cycle in mice. PLoS One 2018;13:e0189931. [PMID: 29304108 DOI: 10.1371/journal.pone.0189931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
14 Patel M, Rangan A. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy. J Theor Biol 2017;426:82-95. [PMID: 28552556 DOI: 10.1016/j.jtbi.2017.05.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Postnova S. Sleep Modelling across Physiological Levels. Clocks Sleep 2019;1:166-84. [PMID: 33089162 DOI: 10.3390/clockssleep1010015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
16 Achermann P, Borbély AA. Sleep Homeostasis and Models of Sleep Regulation. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 377-387.e6. [DOI: 10.1016/b978-0-323-24288-2.00036-2] [Cited by in Crossref: 31] [Article Influence: 6.2] [Reference Citation Analysis]
17 Mehta R, Singh S, Khanday MA, Mallick BN. Reciprocal changes in noradrenaline and GABA levels in discrete brain regions upon rapid eye movement sleep deprivation in rats. Neurochemistry International 2017;108:190-8. [DOI: 10.1016/j.neuint.2017.03.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
18 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
19 Booth V, Diniz Behn CG. Physiologically-based modeling of sleep-wake regulatory networks. Math Biosci 2014;250:54-68. [PMID: 24530893 DOI: 10.1016/j.mbs.2014.01.012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
20 Khanday MA, Somarajan BI, Mehta R, Mallick BN. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats. eNeuro 2016;3:ENEURO. [PMID: 27957531 DOI: 10.1523/ENEURO.0108-16.2016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
21 Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014;9:e88003. [PMID: 24516577 DOI: 10.1371/journal.pone.0088003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
22 Choudhary RC, Khanday MA, Mitra A, Mallick BN. Perifornical orexinergic neurons modulate REM sleep by influencing locus coeruleus neurons in rats. Neuroscience. 2014;279:33-43. [PMID: 25168734 DOI: 10.1016/j.neuroscience.2014.08.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
23 Costa MS, Born J, Claussen JC, Martinetz T. Modeling the effect of sleep regulation on a neural mass model. J Comput Neurosci 2016;41:15-28. [DOI: 10.1007/s10827-016-0602-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
24 Bailey MP, Derks G, Skeldon AC. Circle maps with gaps: Understanding the dynamics of the two-process model for sleep–wake regulation. Eur J Appl Math 2018;29:845-68. [DOI: 10.1017/s0956792518000190] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
25 Joshi A, Youssofzadeh V, Vemana V, McGinnity TM, Prasad G, Wong-Lin K. An integrated modelling framework for neural circuits with multiple neuromodulators. J R Soc Interface 2017;14:20160902. [PMID: 28100828 DOI: 10.1098/rsif.2016.0902] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
26 Patel M. A Simplified model of mutually inhibitory sleep-active and wake-active neuronal populations employing a noise-based switching mechanism. Journal of Theoretical Biology 2016;394:127-36. [DOI: 10.1016/j.jtbi.2016.01.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
27 Grace KP, Horner RL. A Focal Inactivation and Computational Study of Ventrolateral Periaqueductal Gray and Deep Mesencephalic Reticular Nucleus Involvement in Sleep State Switching and Bistability. eNeuro 2020;7:ENEURO. [PMID: 33055199 DOI: 10.1523/ENEURO.0451-19.2020] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Mehta R, Khanday MA, Mallick BN. REM sleep loss associated changes in orexin-A levels in discrete brain areas in rats. Neurosci Lett 2015;590:62-7. [PMID: 25637698 DOI: 10.1016/j.neulet.2015.01.067] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
29 Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015;6:190. [PMID: 26388832 DOI: 10.3389/fneur.2015.00190] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
30 Phillips AJ, Fulcher BD, Robinson PA, Klerman EB. Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput Biol 2013;9:e1003213. [PMID: 24039566 DOI: 10.1371/journal.pcbi.1003213] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
31 Khanday M, Mallick B. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats. Neuroscience 2015;308:125-33. [DOI: 10.1016/j.neuroscience.2015.09.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
32 Gleit RD, Diniz Behn CG, Booth V. Modeling Interindividual Differences in Spontaneous Internal Desynchrony Patterns. J Biol Rhythms 2013;28:339-55. [DOI: 10.1177/0748730413504277] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
33 Mehta R, Khan S, Mallick BN. Relevance of deprivation studies in understanding rapid eye movement sleep. Nat Sci Sleep 2018;10:143-58. [PMID: 29881316 DOI: 10.2147/NSS.S140621] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
34 Holmgren Hopkins N, Sanz-Leon P, Roy D, Postnova S. Spiking patterns and synchronization of thalamic neurons along the sleep-wake cycle. Chaos 2018;28:106314. [PMID: 30384650 DOI: 10.1063/1.5039754] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]