BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Naidoo N, Ferber M, Galante RJ, McShane B, Hu JH, Zimmerman J, Maislin G, Cater J, Wyner A, Worley P, Pack AI. Role of Homer proteins in the maintenance of sleep-wake states. PLoS One 2012;7:e35174. [PMID: 22532843 DOI: 10.1371/journal.pone.0035174] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Gast H, Müller A, Lopez M, Meier D, Huber R, Dechent F, Prinz M, Emmenegger Y, Franken P, Birchler T, Fontana A. CD40 activation induces NREM sleep and modulates genes associated with sleep homeostasis. Brain, Behavior, and Immunity 2013;27:133-44. [DOI: 10.1016/j.bbi.2012.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
2 Keenan BT, Galante RJ, Lian J, Simecek P, Gatti DM, Zhang L, Lim DC, Svenson KL, Churchill GA, Pack AI. High-throughput sleep phenotyping produces robust and heritable traits in Diversity Outbred mice and their founder strains. Sleep 2020;43:zsz278. [PMID: 32074270 DOI: 10.1093/sleep/zsz278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
3 Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. Journal of Neuroscience Methods 2019;326:108368. [DOI: 10.1016/j.jneumeth.2019.108368] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
4 Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 2014;37:1439-51. [PMID: 25142568 DOI: 10.5665/sleep.3990] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 7.0] [Reference Citation Analysis]
5 Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018;41:215-34. [PMID: 29668012 DOI: 10.1590/1678-4685-GMB-2017-0056] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
6 Allen SL, Bonduriansky R, Sgro CM, Chenoweth SF. Sex-biased transcriptome divergence along a latitudinal gradient. Mol Ecol 2017;26:1256-72. [PMID: 28100025 DOI: 10.1111/mec.14015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
7 Gehrman PR, Pfeiffenberger C, Byrne E. The Role of Genes in the Insomnia Phenotype. Sleep Med Clin 2013;8:323-31. [PMID: 24072990 DOI: 10.1016/j.jsmc.2013.04.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
8 Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017;9:a027730. [PMID: 28432135 DOI: 10.1101/cshperspect.a027730] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 13.8] [Reference Citation Analysis]
9 Zhu J, Hafycz J, Keenan BT, Guo X, Pack A, Naidoo N. Acute Sleep Loss Upregulates the Synaptic Scaffolding Protein, Homer1a, in Non-canonical Sleep/Wake Brain Regions, Claustrum, Piriform and Cingulate Cortices. Front Neurosci 2020;14:188. [PMID: 32231514 DOI: 10.3389/fnins.2020.00188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Gilmour G, Broad LM, Wafford KA, Britton T, Colvin EM, Fivush A, Gastambide F, Getman B, Heinz BA, Mccarthy AP, Prieto L, Shanks E, Smith JW, Taboada L, Edgar DM, Tricklebank MD. In vitro characterisation of the novel positive allosteric modulators of the mGlu5 receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat. Neuropharmacology 2013;64:224-39. [DOI: 10.1016/j.neuropharm.2012.07.030] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
11 Schmidt MH. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neuroscience & Biobehavioral Reviews 2014;47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Cited by in Crossref: 136] [Cited by in F6Publishing: 112] [Article Influence: 17.0] [Reference Citation Analysis]
12 Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights from Drosophila melanogaster on the Neuronal Circuitry and Importance of Sleep. Journal of Neurogenetics 2013;27:23-42. [DOI: 10.3109/01677063.2013.791692] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
13 Dresler M, Spoormaker V, Beitinger P, Czisch M, Kimura M, Steiger A, Holsboer F. Neuroscience-driven discovery and development of sleep therapeutics. Pharmacology & Therapeutics 2014;141:300-34. [DOI: 10.1016/j.pharmthera.2013.10.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
14 Cirelli C, Tononi G. The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021:S1084-9521(21)00031-8. [PMID: 33712366 DOI: 10.1016/j.semcdb.2021.02.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
15 Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021;41:5567-78. [PMID: 34193623 DOI: 10.1523/JNEUROSCI.0026-21.2021] [Reference Citation Analysis]
16 Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 2015;24:476-93. [PMID: 26059855 DOI: 10.1111/jsr.12307] [Cited by in Crossref: 93] [Cited by in F6Publishing: 80] [Article Influence: 13.3] [Reference Citation Analysis]
17 Ahnaou A, Raeymaekers L, Steckler T, Drinkenbrug W. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: Evidence from mGluR5 (−/−) mice. Behavioural Brain Research 2015;282:218-26. [DOI: 10.1016/j.bbr.2015.01.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
18 Ahnaou A, Langlois X, Steckler T, Bartolome-nebreda JM, Drinkenburg WHIM. Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats. Psychopharmacology 2015;232:1107-22. [DOI: 10.1007/s00213-014-3746-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
19 Karrer M, Lopez MA, Meier D, Mikhail C, Ogunshola OO, Müller AF, Strauss L, Tafti M, Fontana A. Cytokine-induced sleep: Neurons respond to TNF with production of chemokines and increased expression of Homer1a in vitro. Brain Behav Immun 2015;47:186-92. [PMID: 25476601 DOI: 10.1016/j.bbi.2014.11.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
20 Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017;40. [PMID: 28329120 DOI: 10.1093/sleep/zsx044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
21 McShane BB, Jensen ST, Pack AI, Wyner AJ. Statistical Learning with Time Series Dependence: An Application to Scoring Sleep in Mice. J Am Stat Assoc 2013;108:1147-62. [PMID: 24504359 DOI: 10.1080/01621459.2013.779838] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
22 Afonso DJ, Machado DR, Koh K. Control of sleep by a network of cell cycle genes. Fly (Austin) 2015;9:165-72. [PMID: 26925838 DOI: 10.1080/19336934.2016.1153776] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
23 Tomita J, Ban G, Kume K. Genes and neural circuits for sleep of the fruit fly. Neuroscience Research 2017;118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 6.6] [Reference Citation Analysis]
24 Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Current Opinion in Neurobiology 2021;69:1-10. [DOI: 10.1016/j.conb.2020.11.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Jensen P, Myhre CL, Lassen PS, Metaxas A, Khan AM, Lambertsen KL, Babcock AA, Finsen B, Larsen MR, Kempf SJ. TNFα affects CREB-mediated neuroprotective signaling pathways of synaptic plasticity in neurons as revealed by proteomics and phospho-proteomics. Oncotarget 2017;8:60223-42. [PMID: 28947966 DOI: 10.18632/oncotarget.19428] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
26 Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. Sleep Science Practice 2021;5. [DOI: 10.1186/s41606-021-00066-2] [Reference Citation Analysis]
27 Pedrazzoli M, Mazzotti DR, Ribeiro AO, Mendes JV, Bittencourt LRA, Tufik S. A single nucleotide polymorphism in the HOMER1 gene is associated with sleep latency and theta power in sleep electroencephalogram. PLoS One 2020;15:e0223632. [PMID: 32645048 DOI: 10.1371/journal.pone.0223632] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 2017;355:511-5. [PMID: 28154077 DOI: 10.1126/science.aai8355] [Cited by in Crossref: 237] [Cited by in F6Publishing: 196] [Article Influence: 47.4] [Reference Citation Analysis]
29 Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. Mol Neuropsychiatry 2019;5:147-61. [PMID: 31312636 DOI: 10.1159/000500267] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
30 Ly S, Strus E, Naidoo N. Genetic disruption of the putative binding site for Homer on DmGluRA reduces sleep in Drosophila. Sleep 2020;43:zsz190. [PMID: 31418019 DOI: 10.1093/sleep/zsz190] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Nian X, Chen W, Bai W, Zhao Z. Regulation of circadian locomotor rhythm by miR-263a. Biological Rhythm Research. [DOI: 10.1080/09291016.2020.1726049] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Ly S, Naidoo N. Loss of DmGluRA exacerbates age-related sleep disruption and reduces lifespan. Neurobiol Aging 2019;80:83-90. [PMID: 31103635 DOI: 10.1016/j.neurobiolaging.2019.04.004] [Reference Citation Analysis]
33 Veatch OJ, Keenan BT, Gehrman PR, Malow BA, Pack AI. Pleiotropic genetic effects influencing sleep and neurological disorders. Lancet Neurol 2017;16:158-70. [PMID: 28102151 DOI: 10.1016/S1474-4422(16)30339-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 11] [Article Influence: 5.8] [Reference Citation Analysis]
34 Keenan BT, Galante RJ, Lian J, Zhang L, Guo X, Veatch OJ, Chesler EJ, O'Brien WT, Svenson KL, Churchill GA, Pack AI. The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice. Curr Biol 2021:S0960-9822(21)01289-6. [PMID: 34653361 DOI: 10.1016/j.cub.2021.09.049] [Reference Citation Analysis]
35 Nadjar A, Wigren HM, Tremblay ME. Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders. Front Cell Neurosci 2017;11:250. [PMID: 28912686 DOI: 10.3389/fncel.2017.00250] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
36 Barone I, Hawks-mayer H, Lipton JO. Mechanisms of sleep and circadian ontogeny through the lens of neurodevelopmental disorders. Neurobiology of Learning and Memory 2019;160:160-72. [DOI: 10.1016/j.nlm.2019.01.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
37 Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018;87:67-86. [PMID: 29391183 DOI: 10.1016/j.neubiorev.2018.01.015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
38 Mang GM, Franken P. Genetic Dissection of Sleep Homeostasis. In: Meerlo P, Benca RM, Abel T, editors. Sleep, Neuronal Plasticity and Brain Function. Berlin: Springer Berlin Heidelberg; 2015. pp. 25-63. [DOI: 10.1007/7854_2013_270] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
39 Naidoo N, Zhu J, Galante RJ, Lian J, Strus E, Lee A, Keenan BT, Pack AI. Reduction of the molecular chaperone binding immunoglobulin protein (BiP) accentuates the effect of aging on sleep-wake behavior. Neurobiol Aging 2018;69:10-25. [PMID: 29843048 DOI: 10.1016/j.neurobiolaging.2018.04.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Anna G, Kannan NN. Post-transcriptional modulators and mediators of the circadian clock. Chronobiol Int 2021;38:1244-61. [PMID: 34056966 DOI: 10.1080/07420528.2021.1928159] [Reference Citation Analysis]
41 El Helou J, Bélanger-Nelson E, Freyburger M, Dorsaz S, Curie T, La Spada F, Gaudreault PO, Beaumont É, Pouliot P, Lesage F, Frank MG, Franken P, Mongrain V. Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A 2013;110:9974-9. [PMID: 23716671 DOI: 10.1073/pnas.1221381110] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 6.6] [Reference Citation Analysis]
42 Gerstner JR, Koberstein JN, Watson AJ, Zapero N, Risso D, Speed TP, Frank MG, Peixoto L. Removal of unwanted variation reveals novel patterns of gene expression linked to sleep homeostasis in murine cortex. BMC Genomics 2016;17:727. [PMID: 27801296 DOI: 10.1186/s12864-016-3065-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]