BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Steidl S, Miller AD, Blaha CD, Yeomans JS. M₅ muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS One 2011;6:e27538. [PMID: 22102904 DOI: 10.1371/journal.pone.0027538] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Spelta LEW, Torres YYS, de Oliveira SCWSEF, Yonamine M, Bailey A, Camarini R, Garcia RCT, Marcourakis T. Chronic escalating-dose and acute binge cocaine treatments change the hippocampal cholinergic muscarinic system on drug presence and after withdrawal. Toxicol Appl Pharmacol 2022;:116068. [PMID: 35597300 DOI: 10.1016/j.taap.2022.116068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Garrison AT, Orsi DL, Capstick RA, Whomble D, Li J, Carter TR, Felts AS, Vinson PN, Rodriguez AL, Han A, Hajari K, Cho HP, Teal LB, Ragland MG, Ghamari-Langroudi M, Bubser M, Chang S, Schnetz-Boutaud NC, Boutaud O, Blobaum AL, Foster DJ, Niswender CM, Conn PJ, Lindsley CW, Jones CK, Han C. Development of VU6019650: A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M5 Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. J Med Chem 2022. [PMID: 35417155 DOI: 10.1021/acs.jmedchem.2c00192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Aoki N, Mori C, Fujita T, Serizawa S, Yamaguchi S, Matsushima T, Homma KJ. Subtype-selective contribution of muscarinic acetylcholine receptors for filial imprinting in newly-hatched domestic chicks. Behavioural Brain Research 2022. [DOI: 10.1016/j.bbr.2022.113789] [Reference Citation Analysis]
4 Wysocka A, Palasz E, Steczkowska M, Niewiadomska G. Dangerous Liaisons: Tau Interaction with Muscarinic Receptors. Curr Alzheimer Res 2020;17:224-37. [PMID: 32329686 DOI: 10.2174/1567205017666200424134311] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
5 Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021;11:605. [PMID: 34065107 DOI: 10.3390/brainsci11050605] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
6 Galaj E, Ranaldi R. Neurobiology of reward-related learning. Neurosci Biobehav Rev 2021;124:224-34. [PMID: 33581225 DOI: 10.1016/j.neubiorev.2021.02.007] [Reference Citation Analysis]
7 Nunes EJ, Rupprecht LE, Foster DJ, Lindsley CW, Conn PJ, Addy NA. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 2020;171:108089. [PMID: 32268153 DOI: 10.1016/j.neuropharm.2020.108089] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Ettaro R, Markovic T, Daniels D, MacLaren DA, Clark SD. Microinjection of urotensin II into the pedunculopontine tegmentum leads to an increase in the consumption of sweet tastants. Physiol Behav 2020;215:112775. [PMID: 31843472 DOI: 10.1016/j.physbeh.2019.112775] [Reference Citation Analysis]
9 Xiao C, Zhou CY, Jiang JH, Yin C. Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin 2020;41:1-9. [PMID: 31554960 DOI: 10.1038/s41401-019-0299-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
10 Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WAC, Rahmani R, Valant C, Langmead CJ, Lindsley CW, Baell JB, Tobin AB, Sexton PM, Christopoulos A, Thal DM. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc Natl Acad Sci U S A 2019;116:26001-7. [PMID: 31772027 DOI: 10.1073/pnas.1914446116] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
11 Vuckovic Z, Gentry PR, Berizzi AE, Hirata K, Varghese S, Thompson G, van der Westhuizen ET, Burger WA, Rahmani R, Valant C, Langmead CJ, Lindsley CW, Baell J, Tobin AB, Sexton PM, Christopoulos A, Thal DM. Crystal structure of the M5 muscarinic acetylcholine receptor.. [DOI: 10.1101/730622] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
12 Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. Adv Pharmacol 2019;86:153-96. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
13 Nunes EJ, Bitner L, Hughley SM, Small KM, Walton SN, Rupprecht LE, Addy NA. Cholinergic Receptor Blockade in the VTA Attenuates Cue-Induced Cocaine-Seeking and Reverses the Anxiogenic Effects of Forced Abstinence. Neuroscience 2019;413:252-63. [PMID: 31271832 DOI: 10.1016/j.neuroscience.2019.06.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
14 Bender AM, Garrison AT, Lindsley CW. The Muscarinic Acetylcholine Receptor M5: Therapeutic Implications and Allosteric Modulation. ACS Chem Neurosci 2019;10:1025-34. [PMID: 30280567 DOI: 10.1021/acschemneuro.8b00481] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
15 Ruan H, Sun J, Liu X, Liu L, Cui R, Li X. Cholinergic M4 receptors are involved in morphine-induced expression of behavioral sensitization by regulating dopamine function in the nucleus accumbens of rats. Behavioural Brain Research 2019;360:128-33. [DOI: 10.1016/j.bbr.2018.12.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
16 Lee NR, Gujarathi S, Bommagani S, Siripurapu K, Zheng G, Dwoskin LP. Muscarinic agonist, (±)-quinuclidin-3-yl-(4-fluorophenethyl)(phenyl)carbamate: High affinity, but low subtype selectivity for human M1 - M5 muscarinic acetylcholine receptors. Bioorg Med Chem Lett 2019;29:471-6. [PMID: 30554957 DOI: 10.1016/j.bmcl.2018.12.022] [Reference Citation Analysis]
17 Wu J, Cui R, Sun C, Li X. 奖赏环路与阿片成瘾:喙内侧被盖核的调节作用. Adv Psychol Sci 2019;27:60-69. [DOI: 10.3724/sp.j.1042.2019.00060] [Reference Citation Analysis]
18 Gunter BW, Gould RW, Bubser M, McGowan KM, Lindsley CW, Jones CK. Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict Biol 2018;23:1106-16. [PMID: 29044937 DOI: 10.1111/adb.12567] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
19 Azzopardi E, Louttit AG, DeOliveira C, Laviolette SR, Schmid S. The Role of Cholinergic Midbrain Neurons in Startle and Prepulse Inhibition. J Neurosci 2018;38:8798-808. [PMID: 30171090 DOI: 10.1523/JNEUROSCI.0984-18.2018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
20 Kaneda K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur J Neurosci 2018;50:2239-46. [DOI: 10.1111/ejn.13962] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Berizzi AE, Perry CJ, Shackleford DM, Lindsley CW, Jones CK, Chen NA, Sexton PM, Christopoulos A, Langmead CJ, Lawrence AJ. Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 2018;43:1510-7. [PMID: 29483658 DOI: 10.1038/s41386-017-0007-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
22 Steidl S, Wasserman DI, Blaha CD, Yeomans JS. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017;83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
23 Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology 2018;136:411-20. [PMID: 28911965 DOI: 10.1016/j.neuropharm.2017.09.011] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
24 Sun J, Tian L, Cui R, Ruan H, Li X. Muscarinic acetylcholine receptor but not nicotinic acetylcholine receptor plays a role in morphine-induced behavioral sensitization in rats. Pharmacology Biochemistry and Behavior 2017;160:39-46. [DOI: 10.1016/j.pbb.2017.08.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
25 Nora GJ, Harun R, Fine DF, Hutchison D, Grobart AC, Stezoski JP, Munoz MJ, Kochanek PM, Leak RK, Drabek T, Wagner AK. Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment. J Neurochem 2017;142:305-22. [PMID: 28445595 DOI: 10.1111/jnc.14058] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
26 Sil’kis IG, Markevich VA. The influence of acetylcholine, dopamine, and GABA on the functioning of the corticostriatal neuronal network in Alzheimer’s and Parkinson’s diseases: A hypothetical mechanism. Neurochem J 2017;11:10-22. [DOI: 10.1134/s1819712416040103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
27 Steidl S, Dhillon ES, Sharma N, Ludwig J. Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behav Brain Res 2017;323:111-6. [PMID: 28143769 DOI: 10.1016/j.bbr.2017.01.039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
28 Grasing K. A threshold model for opposing actions of acetylcholine on reward behavior: Molecular mechanisms and implications for treatment of substance abuse disorders. Behav Brain Res 2016;312:148-62. [PMID: 27316344 DOI: 10.1016/j.bbr.2016.06.022] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
29 Wasserman DI, Tan JMJ, Kim JC, Yeomans JS, Barrot M. Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. Eur J Neurosci 2016;44:1761-70. [DOI: 10.1111/ejn.13237] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
30 Steidl S, Wasserman DI, Blaha CD, Yeomans J. Muscarinic Receptor Gene Transfections and In Vivo Dopamine Electrochemistry: Muscarinic Receptor Control of Dopamine-Dependent Reward and Locomotion. Neuromethods 2016. [DOI: 10.1007/978-1-4939-2858-3_14] [Reference Citation Analysis]
31 Bidaki R, Yazdian P. Ballistic Movements and Psychotic Symptoms due to Methadone Use: A Letter to the Editor. Thrita 2015;4. [DOI: 10.5812/thrita.30159] [Reference Citation Analysis]
32 Steidl S, Veverka K. Optogenetic excitation of LDTg axons in the VTA reinforces operant responding in rats. Brain Research 2015;1614:86-93. [DOI: 10.1016/j.brainres.2015.04.021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
33 Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015;1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Cited by in Crossref: 103] [Cited by in F6Publishing: 109] [Article Influence: 14.7] [Reference Citation Analysis]
34 Mueller LE, Kausch MA, Markovic T, MacLaren DA, Dietz DM, Park J, Clark SD. Intra-ventral tegmental area microinjections of urotensin II modulate the effects of cocaine. Behav Brain Res 2015;278:271-9. [PMID: 25264578 DOI: 10.1016/j.bbr.2014.09.036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 MacLaren DA, Wilson DI, Winn P. Selective lesions of the cholinergic neurons within the posterior pedunculopontine do not alter operant learning or nicotine sensitization. Brain Struct Funct 2016;221:1481-97. [PMID: 25586659 DOI: 10.1007/s00429-014-0985-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
36 Knapp CM, Ciraulo DA, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum. Behav Brain Res 2014;274:291-301. [PMID: 25151622 DOI: 10.1016/j.bbr.2014.08.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
37 Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR, Niswender CM, Sulzer D, Lindsley CW, Xiang Z, Conn PJ. M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J Neurosci 2014;34:3253-62. [PMID: 24573284 DOI: 10.1523/JNEUROSCI.4896-13.2014] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 6.8] [Reference Citation Analysis]
38 Garzón M, Pickel VM. Somatodendritic targeting of M5 muscarinic receptor in the rat ventral tegmental area: implications for mesolimbic dopamine transmission. J Comp Neurol 2013;521:2927-46. [PMID: 23504804 DOI: 10.1002/cne.23323] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
39 Steidl S, Wang H, Wise RA. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats. PLoS One 2014;9:e84412. [PMID: 24465410 DOI: 10.1371/journal.pone.0084412] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
40 Zhang Y, Mayer-Blackwell B, Schlussman SD, Randesi M, Butelman ER, Ho A, Ott J, Kreek MJ. Extended access oxycodone self-administration and neurotransmitter receptor gene expression in the dorsal striatum of adult C57BL/6 J mice. Psychopharmacology (Berl) 2014;231:1277-87. [PMID: 24221825 DOI: 10.1007/s00213-013-3306-3] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
41 Steidl S, Lee E, Wasserman D, Yeomans JS. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice. Behavioural Brain Research 2013;252:176-9. [DOI: 10.1016/j.bbr.2013.05.053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
42 Watt ML, Rorick-Kehn L, Shaw DB, Knitowski KM, Quets AT, Chesterfield AK, McKinzie DL, Felder CC. The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype. Neuropsychopharmacology 2013;38:2717-26. [PMID: 23907402 DOI: 10.1038/npp.2013.186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
43 Wasserman DI, Wang HG, Rashid AJ, Josselyn SA, Yeomans JS. Cholinergic control of morphine-induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. Eur J Neurosci 2013;38:2774-85. [DOI: 10.1111/ejn.12279] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
44 Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it’s implications for psychiatric disorders. Front Cell Neurosci. 2013;7:55. [PMID: 23653591 DOI: 10.3389/fncel.2013.00055] [Cited by in Crossref: 60] [Cited by in F6Publishing: 67] [Article Influence: 6.7] [Reference Citation Analysis]
45 Gentry PR, Bridges TM, Lamsal A, Vinson PN, Smith E, Chase P, Hodder PS, Engers JL, Niswender CM, Daniels JS, Conn PJ, Wood MR, Lindsley CW. Discovery of ML326: The first sub-micromolar, selective M5 PAM. Bioorg Med Chem Lett 2013;23:2996-3000. [PMID: 23562060 DOI: 10.1016/j.bmcl.2013.03.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
46 Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A. Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology 2012;63:1248-57. [DOI: 10.1016/j.neuropharm.2012.07.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
47 Bodnar RJ. Endogenous opiates and behavior: 2011. Peptides 2012;38:463-522. [PMID: 23041439 DOI: 10.1016/j.peptides.2012.09.027] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]