BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P, Joiner WJ, Thomas SA, Eckenhoff RG, Sehgal A, Kelz MB. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 2010;5:e11903. [PMID: 20689589 DOI: 10.1371/journal.pone.0011903] [Cited by in Crossref: 137] [Cited by in F6Publishing: 126] [Article Influence: 11.4] [Reference Citation Analysis]
Number Citing Articles
1 Marchant N, Sanders R, Sleigh J, Vanhaudenhuyse A, Bruno MA, Brichant JF, Laureys S, Bonhomme V. How electroencephalography serves the anesthesiologist. Clin EEG Neurosci. 2014;45:22-32. [PMID: 24415399 DOI: 10.1177/1550059413509801] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
2 Rokos A, Mišić B, Berkun K, Duclos C, Tarnal V, Janke E, Picton P, Golmirzaie G, Basner M, Avidan MS, Kelz MB, Mashour GA, Blain-Moraes S. Distinct and Dissociable EEG Networks Are Associated With Recovery of Cognitive Function Following Anesthesia-Induced Unconsciousness. Front Hum Neurosci 2021;15:706693. [PMID: 34594193 DOI: 10.3389/fnhum.2021.706693] [Reference Citation Analysis]
3 Chander D, García PS, MacColl JN, Illing S, Sleigh JW. Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 2014;9:e106291. [PMID: 25264892 DOI: 10.1371/journal.pone.0106291] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
4 Björnström K, Turina D, Strid T, Sundqvist T, Eintrei C. Orexin A inhibits propofol-induced neurite retraction by a phospholipase D/protein kinase Cε-dependent mechanism in neurons. PLoS One 2014;9:e97129. [PMID: 24828410 DOI: 10.1371/journal.pone.0097129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
5 Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019;124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Hu FY, Hanna GM, Han W, Mardini F, Thomas SA, Wyner AJ, Kelz MB. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology 2012;117:1006-17. [PMID: 23042227 DOI: 10.1097/ALN.0b013e3182700ab9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
7 Emerson DJ, Weiser BP, Psonis J, Liao Z, Taratula O, Fiamengo A, Wang X, Sugasawa K, Smith AB 3rd, Eckenhoff RG, Dmochowski IJ. Direct modulation of microtubule stability contributes to anthracene general anesthesia. J Am Chem Soc 2013;135:5389-98. [PMID: 23484901 DOI: 10.1021/ja311171u] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
8 Kim H, Moon JY, Mashour GA, Lee U. Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: Theoretical principles and empirical evidence. PLoS Comput Biol 2018;14:e1006424. [PMID: 30161118 DOI: 10.1371/journal.pcbi.1006424] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
9 Kim M, Mashour GA, Moraes SB, Vanini G, Tarnal V, Janke E, Hudetz AG, Lee U. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness. Front Comput Neurosci 2016;10:1. [PMID: 26834616 DOI: 10.3389/fncom.2016.00001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
10 MacIver MB, Bland BH. Chaos analysis of EEG during isoflurane-induced loss of righting in rats. Front Syst Neurosci 2014;8:203. [PMID: 25360091 DOI: 10.3389/fnsys.2014.00203] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
11 Hudson AE, Calderon DP, Pfaff DW, Proekt A. Recovery of consciousness is mediated by a network of discrete metastable activity states. Proc Natl Acad Sci U S A 2014;111:9283-8. [PMID: 24927558 DOI: 10.1073/pnas.1408296111] [Cited by in Crossref: 93] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
12 Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021;46:1487-501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Reference Citation Analysis]
13 Weiser BP, Kelz MB, Eckenhoff RG. In vivo activation of azipropofol prolongs anesthesia and reveals synaptic targets. J Biol Chem 2013;288:1279-85. [PMID: 23184948 DOI: 10.1074/jbc.M112.413989] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
14 Joiner WJ, Friedman EB, Hung HT, Koh K, Sowcik M, Sehgal A, Kelz MB. Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness. PLoS Genet 2013;9:e1003605. [PMID: 24039590 DOI: 10.1371/journal.pgen.1003605] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
15 Wasilczuk AZ, Meng QC, Mckinstry-wu AR. Electroencephalographic Evidence for Individual Neural Inertia in Mice That Decreases With Time. Front Syst Neurosci 2022;15:787612. [DOI: 10.3389/fnsys.2021.787612] [Reference Citation Analysis]
16 Mashour GA, Avidan MS. Dementia and sensitivity to anesthetics. Can J Anesth/J Can Anesth 2014;61:599-604. [DOI: 10.1007/s12630-014-0166-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Tarnal V, Vlisides PE, Mashour GA. The Neurobiology of Anesthetic Emergence. J Neurosurg Anesthesiol. 2016;28:250-255. [PMID: 26274626 DOI: 10.1097/ana.0000000000000212] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
18 Warnaby CE, Sleigh JW, Hight D, Jbabdi S, Tracey I. Investigation of Slow-wave Activity Saturation during Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans. Anesthesiology 2017;127:645-57. [PMID: 28665814 DOI: 10.1097/ALN.0000000000001759] [Cited by in Crossref: 34] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
19 Kim M, Harris RE, Dasilva AF, Lee U. Explosive Synchronization-Based Brain Modulation Reduces Hypersensitivity in the Brain Network: A Computational Model Study. Front Comput Neurosci 2022;16:815099. [DOI: 10.3389/fncom.2022.815099] [Reference Citation Analysis]
20 Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Picton P, Mashour GA, Hudetz AG. Asymmetric neural dynamics characterize loss and recovery of consciousness. Neuroimage 2021;236:118042. [PMID: 33848623 DOI: 10.1016/j.neuroimage.2021.118042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 . News updates. Lab Anim 2010;39:293-293. [DOI: 10.1038/laban1010-293] [Reference Citation Analysis]
22 Kaiser HA, Hight D, Avidan MS. A narrative review of electroencephalogram-based monitoring during cardiovascular surgery. Current Opinion in Anaesthesiology 2020;33:92-100. [DOI: 10.1097/aco.0000000000000819] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
23 Ferreira AL, Correia R, Vide S, Ferreira AD, Kelz MB, Mendes JG, Nunes CS, Amorim P. Patterns of Hysteresis Between Induction and Emergence of Neuroanesthesia Are Present in Spinal and Intracranial Surgeries. J Neurosurg Anesthesiol. 2020;32:82-89. [PMID: 30371631 DOI: 10.1097/ana.0000000000000559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Whitlock EL, Villafranca AJ, Lin N, Palanca BJ, Jacobsohn E, Finkel KJ, Zhang L, Burnside BA, Kaiser HA, Evers AS, Avidan MS. Relationship between bispectral index values and volatile anesthetic concentrations during the maintenance phase of anesthesia in the B-Unaware trial. Anesthesiology 2011;115:1209-18. [PMID: 22037642 DOI: 10.1097/ALN.0b013e3182395dcb] [Cited by in Crossref: 52] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
25 Hambrecht-Wiedbusch VS, Li D, Mashour GA. Paradoxical Emergence: Administration of Subanesthetic Ketamine during Isoflurane Anesthesia Induces Burst Suppression but Accelerates Recovery. Anesthesiology 2017;126:482-94. [PMID: 28099246 DOI: 10.1097/ALN.0000000000001512] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
26 Lee M, Sanders RD, Yeom SK, Won DO, Seo KS, Kim HJ, Tononi G, Lee SW. Network Properties in Transitions of Consciousness during Propofol-induced Sedation. Sci Rep 2017;7:16791. [PMID: 29196672 DOI: 10.1038/s41598-017-15082-5] [Cited by in Crossref: 50] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
27 Veselis RA. The Memory Labyrinth: Systems, Processes, and Boundaries. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 31-62. [DOI: 10.1007/978-3-319-47609-4_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
28 Sepúlveda PO, Carrasco E, Tapia LF, Ramos M, Cruz F, Conget P, Olivares QFB, Cortínez I. Evidence of hysteresis in propofol pharmacodynamics. Anaesthesia 2018;73:40-8. [DOI: 10.1111/anae.14009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.6] [Reference Citation Analysis]
29 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
30 Noroozbabaee L, Steyn-Ross DA, Steyn-Ross ML, Sleigh JW. Analysis of the Hindriks and van Putten model for propofol anesthesia: Limitations and extensions. Neuroimage 2021;227:117633. [PMID: 33316393 DOI: 10.1016/j.neuroimage.2020.117633] [Reference Citation Analysis]
31 Turina D, Björnström K. Mechanisms of general anesthetic action: Focus on the cellular network. Translational Neuroscience 2011;2. [DOI: 10.2478/s13380-011-0022-5] [Reference Citation Analysis]
32 Liu S, Ching S. Homeostatic dynamics, hysteresis and synchronization in a low-dimensional model of burst suppression. J Math Biol 2017;74:1011-35. [PMID: 27549764 DOI: 10.1007/s00285-016-1048-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Sepúlveda PO, Tapia LF, Monsalves S. Neural inertia and differences between loss of and recovery from consciousness during total intravenous anaesthesia: a narrative review. Anaesthesia 2019;74:801-9. [DOI: 10.1111/anae.14609] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
34 McCarren HS, Moore JT, Kelz MB. Assessing changes in volatile general anesthetic sensitivity of mice after local or systemic pharmacological intervention. J Vis Exp 2013;:e51079. [PMID: 24192721 DOI: 10.3791/51079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
35 Eleveld DJ, Colin PJ, Absalom AR, Struys MMRF. Resisting neural inertia: an exercise in floccinaucinihilipilification? Br J Anaesth 2021;126:31-4. [PMID: 33121747 DOI: 10.1016/j.bja.2020.09.025] [Reference Citation Analysis]
36 Mashour GA. Top-down mechanisms of anesthetic-induced unconsciousness. Front Syst Neurosci 2014;8:115. [PMID: 25002838 DOI: 10.3389/fnsys.2014.00115] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
37 Zhang Y, Gui H, Hu L, Li C, Zhang J, Liang X. Dopamine D1 receptor in the NAc shell is involved in delayed emergence from isoflurane anesthesia in aged mice. Brain Behav 2021;11:e01913. [PMID: 33094567 DOI: 10.1002/brb3.1913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
38 Ye JH, Liu Y, Zuo W. In response. Anesth Analg 2014;118:485. [PMID: 24445651 DOI: 10.1213/ANE.0000000000000024] [Reference Citation Analysis]
39 Adapa R. Consciousness and Anesthesia. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 63-78. [DOI: 10.1007/978-3-319-47609-4_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
40 Pick J, Chen Y, Moore JT, Sun Y, Wyner AJ, Friedman EB, Kelz MB. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology 2011;115:702-12. [PMID: 21934405 DOI: 10.1097/ALN.0b013e31822ddd72] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
41 Voss LJ, Brock M, Carlsson C, Steyn-Ross A, Steyn-Ross M, Sleigh JW. Investigating paradoxical hysteresis effects in the mouse neocortical slice model. Eur J Pharmacol 2012;675:26-31. [PMID: 22166374 DOI: 10.1016/j.ejphar.2011.11.045] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
42 Chemali JJ, Kenny JD, Olutola O, Taylor NE, Kimchi EY, Purdon PL, Brown EN, Solt K. Ageing delays emergence from general anaesthesia in rats by increasing anaesthetic sensitivity in the brain. Br J Anaesth 2015;115 Suppl 1:i58-65. [PMID: 26174302 DOI: 10.1093/bja/aev112] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
43 Hight DF, Dadok VM, Szeri AJ, García PS, Voss L, Sleigh JW. Emergence from general anesthesia and the sleep-manifold. Front Syst Neurosci 2014;8:146. [PMID: 25165436 DOI: 10.3389/fnsys.2014.00146] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
44 Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A. Coherence of Visual-Evoked Gamma Oscillations Is Disrupted by Propofol but Preserved Under Equipotent Doses of Isoflurane. Front Syst Neurosci 2019;13:19. [PMID: 31139058 DOI: 10.3389/fnsys.2019.00019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
45 Lee U, Mashour GA. Stochastic nature of neural inertia. Br J Anaesth 2018;121:7-8. [PMID: 29935597 DOI: 10.1016/j.bja.2018.04.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Pal D, Jones JM, Wisidagamage S, Meisler MH, Mashour GA. Reduced Nav1.6 Sodium Channel Activity in Mice Increases In Vivo Sensitivity to Volatile Anesthetics. PLoS One 2015;10:e0134960. [PMID: 26252017 DOI: 10.1371/journal.pone.0134960] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
47 Sepúlveda V PO, Demaría MC. Critical view of the effect site modelling of propofol. Rev Esp Anestesiol Reanim (Engl Ed) 2019;66:425-33. [PMID: 31477336 DOI: 10.1016/j.redar.2019.03.001] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
48 Hutt A, Buhry L. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci 2014;37:417-37. [PMID: 24976146 DOI: 10.1007/s10827-014-0512-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
49 Hutt A. The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia. Cogn Neurodyn 2012;6:227-37. [PMID: 23730354 DOI: 10.1007/s11571-011-9182-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
50 Hudetz AG. General anesthesia and human brain connectivity. Brain Connect 2012;2:291-302. [PMID: 23153273 DOI: 10.1089/brain.2012.0107] [Cited by in Crossref: 143] [Cited by in F6Publishing: 130] [Article Influence: 15.9] [Reference Citation Analysis]
51 Vanini G, Nemanis K, Baghdoyan HA, Lydic R. GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci 2014;40:2264-73. [PMID: 24674578 DOI: 10.1111/ejn.12571] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
52 Liu X, Lauer KK, Ward BD, Li SJ, Hudetz AG. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology 2013;118:59-69. [PMID: 23221862 DOI: 10.1097/ALN.0b013e318277a801] [Cited by in Crossref: 96] [Cited by in F6Publishing: 57] [Article Influence: 10.7] [Reference Citation Analysis]
53 Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN. Methylphenidate actively induces emergence from general anesthesia. Anesthesiology. 2011;115:791-803. [PMID: 21934407 DOI: 10.1097/aln.0b013e31822e92e5] [Cited by in Crossref: 112] [Cited by in F6Publishing: 69] [Article Influence: 10.2] [Reference Citation Analysis]
54 Vizuete JA, Pillay S, Ropella KM, Hudetz AG. Graded defragmentation of cortical neuronal firing during recovery of consciousness in rats. Neuroscience 2014;275:340-51. [PMID: 24952333 DOI: 10.1016/j.neuroscience.2014.06.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
55 Troup M, Zalucki OH, Kottler BD, Karunanithi S, Anggono V, van Swinderen B. Syntaxin1A Neomorphic Mutations Promote Rapid Recovery from Isoflurane Anesthesia in Drosophila melanogaster. Anesthesiology 2019;131:555-68. [PMID: 31356232 DOI: 10.1097/ALN.0000000000002850] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
56 Li Y, Li F, Zheng H, Jiang L, Peng Y, Zhang Y, Yao D, Xu T, Yuan T, Xu P. Recognition of general anesthesia-induced loss of consciousness based on the spatial pattern of the brain networks. J Neural Eng 2021;18. [PMID: 34534980 DOI: 10.1088/1741-2552/ac27fc] [Reference Citation Analysis]
57 Zalucki OH, Menon H, Kottler B, Faville R, Day R, Bademosi AT, Lavidis N, Karunanithi S, van Swinderen B. Syntaxin1A-mediated Resistance and Hypersensitivity to Isoflurane in Drosophila melanogaster. Anesthesiology 2015;122:1060-74. [PMID: 25738637 DOI: 10.1097/ALN.0000000000000629] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
58 Mashour GA, Alkire MT. Evolution of consciousness: phylogeny, ontogeny, and emergence from general anesthesia. Proc Natl Acad Sci U S A 2013;110 Suppl 2:10357-64. [PMID: 23754370 DOI: 10.1073/pnas.1301188110] [Cited by in Crossref: 64] [Cited by in F6Publishing: 49] [Article Influence: 7.1] [Reference Citation Analysis]
59 Mathis MR, Schonberger RB, Whitlock EL, Vogt KM, Lagorio JE, Jones KA, Conroy JM, Kheterpal S. Opportunities Beyond the Anesthesiology Department: Broader Impact Through Broader Thinking. Anesth Analg 2021. [PMID: 33684091 DOI: 10.1213/ANE.0000000000005428] [Reference Citation Analysis]
60 Olufs ZPG, Loewen CA, Ganetzky B, Wassarman DA, Perouansky M. Genetic variability affects absolute and relative potencies and kinetics of the anesthetics isoflurane and sevoflurane in Drosophila melanogaster. Sci Rep 2018;8:2348. [PMID: 29402974 DOI: 10.1038/s41598-018-20720-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
61 Zhang Y, Wang Y, Wang C, Yan F, Wang Q, Huang L. Investigation of hysteresis during anesthetic-induced unconsciousness by using brain functional networks. Biomedical Signal Processing and Control 2018;46:314-22. [DOI: 10.1016/j.bspc.2018.07.008] [Reference Citation Analysis]
62 Proekt A, Kelz M. Schrödinger's cat: anaesthetised and not! British Journal of Anaesthesia 2018;120:424-8. [DOI: 10.1016/j.bja.2017.11.068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
63 Wasilczuk AZ, Harrison BA, Kwasniewska P, Ku B, Kelz MB, McKinstry-Wu AR, Proekt A. Resistance to state transitions in responsiveness is differentially modulated by different volatile anaesthetics in male mice. Br J Anaesth 2020;125:308-20. [PMID: 32660718 DOI: 10.1016/j.bja.2020.05.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014;8:232. [PMID: 25540612 DOI: 10.3389/fnsys.2014.00232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
65 Weiser BP, McCarren HS. Disinhibition of histaminergic neurons: lack of effect on arousal switch following propofol hypnosis. J Neurosci 2013;33:1295-6. [PMID: 23345205 DOI: 10.1523/JNEUROSCI.5151-12.2013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
66 Guidera JA, Taylor NE, Lee JT, Vlasov KY, Pei J, Stephen EP, Mayo JP, Brown EN, Solt K. Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats. Front Neural Circuits 2017;11:36. [PMID: 28725184 DOI: 10.3389/fncir.2017.00036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
67 Kuizenga M, Colin P, Reyntjens K, Touw D, Nalbat H, Knotnerus F, Vereecke H, Struys M. Test of neural inertia in humans during general anaesthesia. British Journal of Anaesthesia 2018;120:525-36. [DOI: 10.1016/j.bja.2017.11.072] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 7.8] [Reference Citation Analysis]
68 Su C, Zheng L, Li Y, Zhou H, Wang J, Huang Z, Lai Y. Hysteresis in anesthesia and recovery: Experimental observation and dynamical mechanism. Phys Rev Research 2020;2. [DOI: 10.1103/physrevresearch.2.023289] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Kaiser HA, Knapp J, Sleigh J, Avidan MS, Stüber F, Hight D. [The quantitative EEG in electroencephalogram-based brain monitoring during general anesthesia]. Anaesthesist 2021;70:531-47. [PMID: 33970302 DOI: 10.1007/s00101-021-00960-5] [Reference Citation Analysis]
70 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
71 Sanders RD, Tononi G, Laureys S, Sleigh JW. Unresponsiveness ≠ unconsciousness. Anesthesiology 2012;116:946-59. [PMID: 22314293 DOI: 10.1097/ALN.0b013e318249d0a7] [Cited by in Crossref: 243] [Cited by in F6Publishing: 84] [Article Influence: 24.3] [Reference Citation Analysis]
72 Wu T, Zhang X, Liu Z. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front Phys 2022;17. [DOI: 10.1007/s11467-022-1161-6] [Reference Citation Analysis]
73 McCallum JB, Pillay S, Vizuete JA, Mouradian G, Hudetz AG, Stekiel TA. Strain differences in cortical electroencephalogram associated with isoflurane-induced loss of consciousness. Anesthesiology 2013;118:350-60. [PMID: 23287707 DOI: 10.1097/ALN.0b013e31827ddfed] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
74 Hendrickx JFA, De Wolf AM. End-tidal Anesthetic Concentration: Monitoring, Interpretation, and Clinical Application. Anesthesiology 2022. [PMID: 35483048 DOI: 10.1097/ALN.0000000000004218] [Reference Citation Analysis]
75 van Swinderen B, Kottler B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. Bioessays 2014;36:372-81. [PMID: 24449137 DOI: 10.1002/bies.201300154] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
76 Gent T, Adamantidis A. Anaesthesia and sleep: Where are we now? Clinical and Translational Neuroscience 2017;1:2514183X1772628. [DOI: 10.1177/2514183x17726281] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
77 Coetzee J, Links A, Levin A. Assessment of the clinical validity of an adjusted Marsh pharmacokinetic model using an effect-site rate constant (ke0) of 1.21 min-1. Southern African Journal of Anaesthesia and Analgesia 2021;27:83-91. [DOI: 10.36303/sajaa.2021.27.2.2583] [Reference Citation Analysis]
78 Safavynia SA, Keating G, Speigel I, Fidler JA, Kreuzer M, Rye DB, Jenkins A, García PS. Effects of γ-Aminobutyric Acid Type A Receptor Modulation by Flumazenil on Emergence from General Anesthesia. Anesthesiology 2016;125:147-58. [PMID: 27111534 DOI: 10.1097/ALN.0000000000001134] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
79 Proekt A, Hudson AE. A stochastic basis for neural inertia in emergence from general anaesthesia. Br J Anaesth 2018;121:86-94. [PMID: 29935600 DOI: 10.1016/j.bja.2018.02.035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
80 Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA. 2014;111:3859-3864. [PMID: 24567395 DOI: 10.1073/pnas.1310025111] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 17.1] [Reference Citation Analysis]
81 Warnaby CE, Sleigh JW, Tracey I. In Reply. Anesthesiology 2018;129:375-7. [PMID: 30020179 DOI: 10.1097/ALN.0000000000002289] [Reference Citation Analysis]
82 Flores FJ, Hartnack KE, Fath AB, Kim SE, Wilson MA, Brown EN, Purdon PL. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci U S A 2017;114:E6660-8. [PMID: 28743752 DOI: 10.1073/pnas.1700148114] [Cited by in Crossref: 69] [Cited by in F6Publishing: 52] [Article Influence: 13.8] [Reference Citation Analysis]
83 Hudson A, Proekt A. Some heightened sensitivity. British Journal of Anaesthesia 2015;115:i5-8. [DOI: 10.1093/bja/aev168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
84 Hudetz AG, Pillay S, Wang S, Lee H. Desflurane Anesthesia Alters Cortical Layer-specific Hierarchical Interactions in Rat Cerebral Cortex. Anesthesiology 2020;132:1080-90. [PMID: 32101967 DOI: 10.1097/ALN.0000000000003179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Luppi AI, Cain J, Spindler LRB, Górska UJ, Toker D, Hudson AE, Brown EN, Diringer MN, Stevens RD, Massimini M, Monti MM, Stamatakis EA, Boly M; Curing Coma Campaign and Its Contributing Collaborators. Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocrit Care 2021;35:37-54. [PMID: 34236622 DOI: 10.1007/s12028-021-01281-6] [Reference Citation Analysis]
86 Vizuete JA, Pillay S, Diba K, Ropella KM, Hudetz AG. Monosynaptic functional connectivity in cerebral cortex during wakefulness and under graded levels of anesthesia. Front Integr Neurosci 2012;6:90. [PMID: 23091451 DOI: 10.3389/fnint.2012.00090] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
87 Nicolaou N, Georgiou J. Neural network-based classification of anesthesia/awareness using Granger causality features. Clin EEG Neurosci 2014;45:77-88. [PMID: 23820086 DOI: 10.1177/1550059413486271] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
88 Zalucki O, van Swinderen B. What is unconsciousness in a fly or a worm? A review of general anesthesia in different animal models. Conscious Cogn 2016;44:72-88. [PMID: 27366985 DOI: 10.1016/j.concog.2016.06.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
89 Sellers KK, Bennett DV, Hutt A, Fröhlich F. Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. J Neurophysiol 2013;110:2739-51. [PMID: 24047911 DOI: 10.1152/jn.00404.2013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 6.2] [Reference Citation Analysis]
90 Lee H, Mashour GA, Noh GJ, Kim S, Lee U. Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology 2013;119:1347-59. [PMID: 24013572 DOI: 10.1097/ALN.0b013e3182a8ec8c] [Cited by in Crossref: 91] [Cited by in F6Publishing: 48] [Article Influence: 11.4] [Reference Citation Analysis]
91 Scharf MT, Kelz MB. Sleep and Anesthesia Interactions: A Pharmacological Appraisal. Curr Anesthesiol Rep 2013;3:1-9. [PMID: 23440738 DOI: 10.1007/s40140-012-0007-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
92 Graudejus O, Barton C, Ponce Wong RD, Rowan CC, Oswalt D, Greger B. A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. J Neural Eng 2020;17:056023. [PMID: 33052886 DOI: 10.1088/1741-2552/abb4a5] [Reference Citation Analysis]
93 Aranake A, Mashour G, Avidan M. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia 2013;68:512-22. [DOI: 10.1111/anae.12168] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
94 Proekt A, Kelz MB. Explaining anaesthetic hysteresis with effect-site equilibration. Br J Anaesth 2021;126:265-78. [PMID: 33081972 DOI: 10.1016/j.bja.2020.09.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Kushikata T, Hirota K. Mechanisms of Anesthetic Emergence: Evidence for Active Reanimation. Curr Anesthesiol Rep 2014;4:49-56. [DOI: 10.1007/s40140-013-0045-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Perreault ML, Fan T, Banasikowski TJ, Grace AA, George SR. The atypical dopamine receptor agonist SKF 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. Eur J Neurosci 2017;46:2015-25. [PMID: 28677227 DOI: 10.1111/ejn.13635] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
97 Teig MK, Hudetz AG, Mashour GA. Consciousness and Anesthesia: An Update for the Clinician. Adv Anesth 2012;30:13-27. [PMID: 34522064 DOI: 10.1016/j.aan.2012.08.001] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
98 Land R, Engler G, Kral A, Engel AK. Auditory evoked bursts in mouse visual cortex during isoflurane anesthesia. PLoS One 2012;7:e49855. [PMID: 23185462 DOI: 10.1371/journal.pone.0049855] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
99 LaTourette PC, David EM, Pacharinsak C, Jampachaisri K, Smith JC, Marx JO. Effects of Standard and Sustained-release Buprenorphine on the Minimum Alveolar Concentration of Isoflurane in C57BL/6 Mice. J Am Assoc Lab Anim Sci 2020;59:298-304. [PMID: 32268932 DOI: 10.30802/AALAS-JAALAS-19-000106] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Colin PJ, Kuizenga MH, Vereecke HEM, Struys MMRF. Pharmacokinetic Pharmacodynamic Perspective on the Detection of Signs of Neural Inertia in Humans. Anesthesiology 2018;129:373-5. [PMID: 30020177 DOI: 10.1097/ALN.0000000000002287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Blevins CE, Celeste NA, Marx JO. Effects of Oxygen Supplementation on Injectable and Inhalant Anesthesia in C57BL/6 Mice. J Am Assoc Lab Anim Sci 2021;60:289-97. [PMID: 33972009 DOI: 10.30802/AALAS-JAALAS-20-000143] [Reference Citation Analysis]
102 Bademosi AT, Steeves J, Karunanithi S, Zalucki OH, Gormal RS, Liu S, Lauwers E, Verstreken P, Anggono V, Meunier FA, van Swinderen B. Trapping of Syntaxin1a in Presynaptic Nanoclusters by a Clinically Relevant General Anesthetic. Cell Reports 2018;22:427-40. [DOI: 10.1016/j.celrep.2017.12.054] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
103 Yang Y, Shanechi MM. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia. J Neural Eng 2016;13:066019. [DOI: 10.1088/1741-2560/13/6/066019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
104 McKinstry-Wu AR, Wasilczuk AZ, Harrison BA, Bedell VM, Sridharan MJ, Breig JJ, Pack M, Kelz MB, Proekt A. Analysis of stochastic fluctuations in responsiveness is a critical step toward personalized anesthesia. Elife 2019;8:e50143. [PMID: 31793434 DOI: 10.7554/eLife.50143] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
105 Maier KL, McKinstry-Wu AR, Palanca BJA, Tarnal V, Blain-Moraes S, Basner M, Avidan MS, Mashour GA, Kelz MB. Protocol for the Reconstructing Consciousness and Cognition (ReCCognition) Study. Front Hum Neurosci 2017;11:284. [PMID: 28638328 DOI: 10.3389/fnhum.2017.00284] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
106 Eagleman SL, Drover CM, Drover DR, Ouellette NT, MacIver MB. Remifentanil and Nitrous Oxide Anesthesia Produces a Unique Pattern of EEG Activity During Loss and Recovery of Response. Front Hum Neurosci 2018;12:173. [PMID: 29867405 DOI: 10.3389/fnhum.2018.00173] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
107 Huels ER, Groenhout T, Fields CW, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Delays Emergence From Sevoflurane Anesthesia. Front Syst Neurosci 2021;15:690717. [PMID: 34305541 DOI: 10.3389/fnsys.2021.690717] [Reference Citation Analysis]
108 Boccaletti S, Almendral J, Guan S, Leyva I, Liu Z, Sendiña-nadal I, Wang Z, Zou Y. Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization. Physics Reports 2016;660:1-94. [DOI: 10.1016/j.physrep.2016.10.004] [Cited by in Crossref: 140] [Cited by in F6Publishing: 52] [Article Influence: 23.3] [Reference Citation Analysis]
109 McKinstry-Wu A, Carspecken CW, Proekt A, Kelz MB. Xenon Anesthesia and CT: Noninvasive Measures of Brain Anesthetic Concentration. Methods Enzymol 2018;602:289-98. [PMID: 29588035 DOI: 10.1016/bs.mie.2018.01.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
110 Hight DF, Voss LJ, García PS, Sleigh JW. Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia. J Clin Monit Comput 2017;31:813-23. [PMID: 27444893 DOI: 10.1007/s10877-016-9911-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
111 Eagleman SL, Chander D, Reynolds C, Ouellette NT, MacIver MB. Nonlinear dynamics captures brain states at different levels of consciousness in patients anesthetized with propofol. PLoS One 2019;14:e0223921. [PMID: 31665174 DOI: 10.1371/journal.pone.0223921] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
112 Absalom AR, De Keyser R, Struys MMRF. Closed Loop Anesthesia: Are We Getting Close to Finding the Holy Grail? Anesthesia & Analgesia 2011;112:516-8. [DOI: 10.1213/ane.0b013e318203f5ad] [Cited by in Crossref: 60] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
113 McKinstry-Wu AR, Proekt A, Kelz MB. Neural Inertia: A Sticky Situation for Anesthesia. J Neurosurg Anesthesiol 2020;32:190-2. [PMID: 32349048 DOI: 10.1097/ANA.0000000000000687] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Xiong B, Karim F, Eloy DJ, Ye JH. Gabra6100Q allele Sprague-Dawley rats have a higher sensitivity to hypnosis induced by isoflurane and ethanol than the wild type rats. Neurosci Lett 2021;762:136142. [PMID: 34332026 DOI: 10.1016/j.neulet.2021.136142] [Reference Citation Analysis]
115 Hudson AE. Metastability of Neuronal Dynamics during General Anesthesia: Time for a Change in Our Assumptions? Front Neural Circuits 2017;11:58. [PMID: 28890688 DOI: 10.3389/fncir.2017.00058] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
116 Mashour GA, Hudetz AG. Neural Correlates of Unconsciousness in Large-Scale Brain Networks. Trends Neurosci 2018;41:150-60. [PMID: 29409683 DOI: 10.1016/j.tins.2018.01.003] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 15.8] [Reference Citation Analysis]
117 Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017;12:e0179286. [PMID: 28622355 DOI: 10.1371/journal.pone.0179286] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
118 Långsjö JW, Alkire MT, Kaskinoro K, Hayama H, Maksimow A, Kaisti KK, Aalto S, Aantaa R, Jääskeläinen SK, Revonsuo A, Scheinin H. Returning from oblivion: imaging the neural core of consciousness. J Neurosci 2012;32:4935-43. [PMID: 22492049 DOI: 10.1523/JNEUROSCI.4962-11.2012] [Cited by in Crossref: 129] [Cited by in F6Publishing: 57] [Article Influence: 12.9] [Reference Citation Analysis]
119 Woll KA, Guzik-Lendrum S, Bensel BM, Bhanu NV, Dailey WP, Garcia BA, Gilbert SP, Eckenhoff RG. An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules. J Biol Chem 2018;293:11283-95. [PMID: 29844014 DOI: 10.1074/jbc.RA118.002182] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
120 Nguyen G, Postnova S. Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochemical Pharmacology 2021;191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Joiner WJ. Unraveling the Evolutionary Determinants of Sleep. Curr Biol 2016;26:R1073-87. [PMID: 27780049 DOI: 10.1016/j.cub.2016.08.068] [Cited by in Crossref: 94] [Cited by in F6Publishing: 63] [Article Influence: 18.8] [Reference Citation Analysis]
122 Karunanithi S, Troup M, van Swinderen B. Using Drosophila to Understand General Anesthesia: From Synapses to Behavior. Methods Enzymol 2018;602:153-76. [PMID: 29588027 DOI: 10.1016/bs.mie.2018.02.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
123 Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021;15:644330. [PMID: 33642991 DOI: 10.3389/fnins.2021.644330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Kelz MB, Mashour GA. The Biology of General Anesthesia from Paramecium to Primate. Curr Biol 2019;29:R1199-210. [PMID: 31743680 DOI: 10.1016/j.cub.2019.09.071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
125 Zhang H, Wheat H, Wang P, Jiang S, Baghdoyan HA, Neubig RR, Shi XY, Lydic R. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia. Sleep 2016;39:393-404. [PMID: 26564126 DOI: 10.5665/sleep.5450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
126 Hudetz AG, Vizuete JA, Pillay S, Ropella KM. Critical Changes in Cortical Neuronal Interactions in Anesthetized and Awake Rats. Anesthesiology 2015;123:171-80. [PMID: 25955982 DOI: 10.1097/ALN.0000000000000690] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
127 Lewis LD, Piantoni G, Peterfreund RA, Eskandar EN, Harrell PG, Akeju O, Aglio LS, Cash SS, Brown EN, Mukamel EA, Purdon PL. A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. Elife 2018;7:e33250. [PMID: 30095069 DOI: 10.7554/eLife.33250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
128 Pazienti A, Galluzzi A, Dasilva M, Sanchez-vives MV, Mattia M. Slow waves form expanding, memory-rich mesostates steered by local excitability in fading anesthesia. iScience 2022;25:103918. [DOI: 10.1016/j.isci.2022.103918] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Kum JE, Han HB, Choi JH. Pupil Size in Relation to Cortical States during Isoflurane Anesthesia. Exp Neurobiol 2016;25:86-92. [PMID: 27122995 DOI: 10.5607/en.2016.25.2.86] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
130 Moore JT, Chen J, Han B, Meng QC, Veasey SC, Beck SG, Kelz MB. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol 2012;22:2008-16. [PMID: 23103189 DOI: 10.1016/j.cub.2012.08.042] [Cited by in Crossref: 100] [Cited by in F6Publishing: 93] [Article Influence: 10.0] [Reference Citation Analysis]
131 Hwang E, Kim S, Han K, Choi JH. Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness. PLoS One 2012;7:e50580. [PMID: 23236379 DOI: 10.1371/journal.pone.0050580] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
132 Mashour GA, Pal D. Interfaces of Sleep and Anesthesia. Anesthesiology Clinics 2012;30:385-98. [DOI: 10.1016/j.anclin.2012.05.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
133 Perouansky M, MacIver MB, Pearce RA. Wake Up, Neurons! Astrocytes Calling. Anesthesiology 2019;130:361-3. [PMID: 30707121 DOI: 10.1097/ALN.0000000000002589] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
134 Taylor NE, Chemali JJ, Brown EN, Solt K. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30-39. [PMID: 23221866 DOI: 10.1097/aln.0b013e318278c896] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
135 Shortal BP, Reitz SL, Aggarwal A, Meng QC, McKinstry-Wu AR, Kelz MB, Proekt A. Development and validation of brain target controlled infusion of propofol in mice. PLoS One 2018;13:e0194949. [PMID: 29684039 DOI: 10.1371/journal.pone.0194949] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
136 Thomson AJ, Nimmo AF, Engbers FHM, Glen JB. A novel technique to determine an ‘apparent k e0 ’ value for use with the Marsh pharmacokinetic model for propofol. Anaesthesia 2014;69:420-8. [DOI: 10.1111/anae.12596] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
137 Andersson H, Björnström K, Eintrei C, Sundqvist T. Orexin a phosphorylates the γ-Aminobutyric acid type A receptor β2 subunit on a serine residue and changes the surface expression of the receptor in SH-SY5Y cells exposed to propofol. J Neurosci Res 2015;93:1748-55. [PMID: 26283475 DOI: 10.1002/jnr.23631] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
138 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
139 Ramadasan-Nair R, Hui J, Itsara LS, Morgan PG, Sedensky MM. Mitochondrial Function in Astrocytes Is Essential for Normal Emergence from Anesthesia in Mice. Anesthesiology 2019;130:423-34. [PMID: 30707122 DOI: 10.1097/ALN.0000000000002528] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]