BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Honda M, Eriksson KS, Zhang S, Tanaka S, Lin L, Salehi A, Hesla PE, Maehlen J, Gaus SE, Yanagisawa M, Sakurai T, Taheri S, Tsuchiya K, Honda Y, Mignot E. IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS One 2009;4:e4254. [PMID: 19158946 DOI: 10.1371/journal.pone.0004254] [Cited by in Crossref: 64] [Cited by in F6Publishing: 49] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Nishino S, Okuro M, Kotorii N, Anegawa E, Ishimaru Y, Matsumura M, Kanbayashi T. Hypocretin/orexin and narcolepsy: new basic and clinical insights. Acta Physiol (Oxf) 2010;198:209-22. [PMID: 19555382 DOI: 10.1111/j.1748-1716.2009.02012.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
2 Baertling F, Kokozidou M, Pufe T, Clarner T, Windoffer R, Wruck CJ, Brandenburg L, Beyer C, Kipp M. ADAM12 is expressed by astrocytes during experimental demyelination. Brain Research 2010;1326:1-14. [DOI: 10.1016/j.brainres.2010.02.049] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
3 Nishino S, Deguzman C, Yamadera W, Chiba S, Kanbayashi T. Neurochemistry and Biomarkers of Narcolepsy and Other Primary and Secondary Hypersomnias. Sleep Medicine Clinics 2012;7:233-48. [DOI: 10.1016/j.jsmc.2012.03.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
4 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nguyen KH, Yao XH, Moulik S, Mishra S, Nyomba BL. Human IGF binding protein-3 overexpression impairs glucose regulation in mice via an inhibition of insulin secretion. Endocrinology 2011;152:2184-96. [PMID: 21447640 DOI: 10.1210/en.2010-1324] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
6 Nishino S, Sagawa Y. The Neurochemistry of Awakening. Science of Awakening. Elsevier; 2010. pp. 229-55. [DOI: 10.1016/s0074-7742(10)93010-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
7 Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021;22:1849. [PMID: 33673334 DOI: 10.3390/ijms22041849] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Pedersen NW, Holm A, Kristensen NP, Bjerregaard AM, Bentzen AK, Marquard AM, Tamhane T, Burgdorf KS, Ullum H, Jennum P, Knudsen S, Hadrup SR, Kornum BR. CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat Commun 2019;10:837. [PMID: 30783092 DOI: 10.1038/s41467-019-08774-1] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 14.3] [Reference Citation Analysis]
9 Xu X, Wells AB, O'Brien DR, Nehorai A, Dougherty JD. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 2014;34:1420-31. [PMID: 24453331 DOI: 10.1523/JNEUROSCI.4488-13.2014] [Cited by in Crossref: 157] [Cited by in F6Publishing: 105] [Article Influence: 19.6] [Reference Citation Analysis]
10 Yamada PM, Lee KW. Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 2009;296:C954-76. [PMID: 19279229 DOI: 10.1152/ajpcell.00598.2008] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 8.2] [Reference Citation Analysis]
11 De la Herrán-arita AK, Drucker-colín R. Models for narcolepsy with cataplexy drug discovery. Expert Opinion on Drug Discovery 2012;7:155-64. [DOI: 10.1517/17460441.2012.651454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
12 Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, Lecendreux M, Lammers GJ, Donjacour CE, Du Pasquier RA, Pfister C, Petit B, Hor H, Mühlethaler M, Tafti M. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 2010;120:713-9. [PMID: 20160349 DOI: 10.1172/JCI41366] [Cited by in Crossref: 215] [Cited by in F6Publishing: 77] [Article Influence: 17.9] [Reference Citation Analysis]
13 De La Herrán-Arita AK, Zomosa-Signoret VC, Millán-Aldaco DA, Palomero-Rivero M, Guerra-Crespo M, Drucker-Colín R, Vidaltamayo R. Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice. Neuroscience 2011;183:134-43. [PMID: 21435382 DOI: 10.1016/j.neuroscience.2011.03.029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
14 Liu J, Merkle FT, Gandhi AV, Gagnon JA, Woods IG, Chiu CN, Shimogori T, Schier AF, Prober DA. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 2015;142:1113-24. [PMID: 25725064 DOI: 10.1242/dev.117424] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
15 Fontana A, Gast H, Reith W, Recher M, Birchler T, Bassetti CL. Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss? Brain. 2010;133:1300-1311. [PMID: 20403960 DOI: 10.1093/brain/awq086] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 5.2] [Reference Citation Analysis]
16 Cao M. Advances in narcolepsy. Med Clin North Am 2010;94:541-55. [PMID: 20451031 DOI: 10.1016/j.mcna.2010.02.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
17 Azzam S, Schlatzer D, Nethery D, Saleh D, Li X, Akladious A, Chance MR, Strohl KP. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy. Proteomics 2017;17. [PMID: 28544614 DOI: 10.1002/pmic.201600478] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
18 Chatterjee O, Gopalakrishnan L, Mol P, Advani J, Nair B, Shankar SK, Mahadevan A, Prasad TSK. The Normal Human Adult Hypothalamus Proteomic Landscape: Rise of Neuroproteomics in Biological Psychiatry and Systems Biology. OMICS 2021;25:693-710. [PMID: 34714154 DOI: 10.1089/omi.2021.0158] [Reference Citation Analysis]
19 Cao M, Guilleminault C. Hypocretin and its emerging role as a target for treatment of sleep disorders. Curr Neurol Neurosci Rep 2011;11:227-34. [PMID: 21170610 DOI: 10.1007/s11910-010-0172-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
20 Fernández de Sevilla ME, Pignatelli J, Zegarra-Valdivia JA, Mendez P, Nuñez A, Torres Alemán I. Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry 2022. [PMID: 35115701 DOI: 10.1038/s41380-022-01442-9] [Reference Citation Analysis]
21 Bernardini C, Lattanzi W, Bosco P, Franceschini C, Plazzi G, Michetti F, Ferri R. Genome-wide gene expression profiling of human narcolepsy. Gene Expr 2012;15:171-81. [PMID: 22783726 DOI: 10.3727/105221612x13372578119652] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
22 Tanaka S, Honda M. IgG abnormality in narcolepsy and idiopathic hypersomnia. PLoS One 2010;5:e9555. [PMID: 20221267 DOI: 10.1371/journal.pone.0009555] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
23 Mignot EJ. History of narcolepsy at Stanford University. Immunol Res 2014;58:315-39. [PMID: 24825774 DOI: 10.1007/s12026-014-8513-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
24 Hirano A, Hsu PK, Zhang L, Xing L, McMahon T, Yamazaki M, Ptáček LJ, Fu YH. DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A 2018;115:3434-9. [PMID: 29531056 DOI: 10.1073/pnas.1801693115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
25 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
26 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
28 Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Lerer-Goldshtein T, Appelbaum L. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. Elife 2015;4:e08638. [PMID: 26426478 DOI: 10.7554/eLife.08638] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
29 Katayama A, Kanada Y, Tsukada M, Akanuma Y, Takemura H, Ono T, Suga H, Mera H, Hisamitsu T, Sunagawa M. Yokukansan (Kampo medicinal formula) prevents the development of morphine tolerance by inhibiting the secretion of orexin A. Integr Med Res 2018;7:141-8. [PMID: 29989049 DOI: 10.1016/j.imr.2018.02.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, Nokelainen P, Alén R, Wallden T, Espo M, Rusanen H, Olme J, Sätilä H, Arikka H, Kaipainen P, Julkunen I, Kirjavainen T. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 2012;7:e33723. [PMID: 22470463 DOI: 10.1371/journal.pone.0033723] [Cited by in Crossref: 295] [Cited by in F6Publishing: 232] [Article Influence: 29.5] [Reference Citation Analysis]
31 Chen Y, Zhou Y, Yang X, Cao Z, Chen X, Qin Q, Liu C, Sun Y. Insulin-like growth factor binding protein 3 gene of golden pompano (TroIGFBP3) promotes antimicrobial immune defense. Fish Shellfish Immunol 2020;103:47-57. [PMID: 32278114 DOI: 10.1016/j.fsi.2020.04.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Faraco J, Mignot E. Immunological and Genetic Aspects of Narcolepsy. Sleep Med Res 2011;2:39-47. [DOI: 10.17241/smr.2011.2.2.39] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Sánchez-García A, Cabral-Pacheco GA, Zomosa-Signoret VC, Ortiz-López R, Camacho A, Tabera-Tarello PM, Garnica-López JA, Vidaltamayo R. Modular organization of a hypocretin gene minimal promoter. Mol Med Rep 2018;17:2263-70. [PMID: 29207107 DOI: 10.3892/mmr.2017.8142] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Fernandez AM, Santi A, Torres Aleman I. Insulin Peptides as Mediators of the Impact of Life Style in Alzheimer's disease. Brain Plast 2018;4:3-15. [PMID: 30564544 DOI: 10.3233/BPL-180071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
35 Zegarra‐valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB j 2020;34:15975-90. [DOI: 10.1096/fj.202001281rr] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
36 Tanaka S. Transcriptional regulation of the hypocretin/orexin gene. Vitam Horm 2012;89:75-90. [PMID: 22640609 DOI: 10.1016/B978-0-12-394623-2.00005-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
37 Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiologica 2010;198:335-48. [DOI: 10.1111/j.1748-1716.2009.02008.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
38 Jackson MW, Spencer NJ, Reed JH, Smith AJ, Gordon TP. Potentiation of a functional autoantibody in narcolepsy by a cholinesterase inhibitor. Lab Invest 2009;89:1332-9. [PMID: 19806080 DOI: 10.1038/labinvest.2009.108] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
39 De la Herrán-Arita AK, Guerra-Crespo M, Drucker-Colín R. Narcolepsy and orexins: an example of progress in sleep research. Front Neurol 2011;2:26. [PMID: 21541306 DOI: 10.3389/fneur.2011.00026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
40 Lékó AH, Cservenák M, Szabó ÉR, Hanics J, Alpár A, Dobolyi Á. Insulin-like growth factor I and its binding protein-3 are regulators of lactation and maternal responsiveness. Sci Rep 2017;7:3396. [PMID: 28611445 DOI: 10.1038/s41598-017-03645-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
41 Tanaka S, Kodama T, Nonaka T, Toyoda H, Arai M, Fukazawa M, Honda Y, Honda M, Mignot E. Transcriptional regulation of the hypocretin/orexin gene by NR6A1. Biochem Biophys Res Commun 2010;403:178-83. [PMID: 21056546 DOI: 10.1016/j.bbrc.2010.11.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
42 Dalal J, Roh JH, Maloney SE, Akuffo A, Shah S, Yuan H, Wamsley B, Jones WB, de Guzman Strong C, Gray PA, Holtzman DM, Heintz N, Dougherty JD. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev 2013;27:565-78. [PMID: 23431030 DOI: 10.1101/gad.207654.112] [Cited by in Crossref: 68] [Cited by in F6Publishing: 59] [Article Influence: 7.6] [Reference Citation Analysis]
43 Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. Adv Neurobiol 2018;21:101-93. [PMID: 30334222 DOI: 10.1007/978-3-319-94593-4_6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
44 Luo G, Lin L, Jacob L, Bonvalet M, Ambati A, Plazzi G, Pizza F, Leib R, Adams CM, Partinen M, Mignot EJ. Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One 2017;12:e0187305. [PMID: 29220370 DOI: 10.1371/journal.pone.0187305] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
45 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
46 Hu P, Thinschmidt JS, Caballero S, Adamson S, Cole L, Chan-Ling T, Grant MB. Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice. Am J Physiol Endocrinol Metab 2015;308:E688-98. [PMID: 25714673 DOI: 10.1152/ajpendo.00504.2014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
47 Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019;43:2164-76. [PMID: 30896835 DOI: 10.3892/ijmm.2019.4143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
48 Mignot E. Narcolepsy. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 855-872.e7. [DOI: 10.1016/b978-0-323-24288-2.00089-1] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
49 Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019;213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Reference Citation Analysis]
50 Ouyang H, Wang S, Zheng Q, Zhang J. Constructing gene network for type 1 narcolepsy based on genome-wide association study and differential gene expression analysis (STROBE). Medicine (Baltimore) 2020;99:e19985. [PMID: 32358372 DOI: 10.1097/MD.0000000000019985] [Reference Citation Analysis]
51 Kawai M, O'Hara R, Einen M, Lin L, Mignot E. Narcolepsy in African Americans. Sleep 2015;38:1673-81. [PMID: 26158891 DOI: 10.5665/sleep.5140] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
52 Kawashima M, Lin L, Tanaka S, Jennum P, Knudsen S, Nevsimalova S, Plazzi G, Mignot E. Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep 2010;33:869-74. [PMID: 20614846 DOI: 10.1093/sleep/33.7.869] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 7.4] [Reference Citation Analysis]