BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bizzego A, Bussola N, Chierici M, Maggio V, Francescatto M, Cima L, Cristoforetti M, Jurman G, Furlanello C. Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLoS Comput Biol 2019;15:e1006269. [PMID: 30917113 DOI: 10.1371/journal.pcbi.1006269] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Xie CY, Pang CL, Chan B, Wong EY, Dou Q, Vardhanabhuti V. Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature. Cancers (Basel) 2021;13:2469. [PMID: 34069367 DOI: 10.3390/cancers13102469] [Reference Citation Analysis]
2 Bizzego A, Gabrieli G, Neoh MJY, Esposito G. Improving the Efficacy of Deep-Learning Models for Heart Beat Detection on Heterogeneous Datasets. Bioengineering (Basel) 2021;8:193. [PMID: 34940346 DOI: 10.3390/bioengineering8120193] [Reference Citation Analysis]
3 Prybutok AN, Cain JY, Leonard JN, Bagheri N. Fighting fire with fire: deploying complexity in computational modeling to effectively characterize complex biological systems. Current Opinion in Biotechnology 2022;75:102704. [DOI: 10.1016/j.copbio.2022.102704] [Reference Citation Analysis]
4 Phokaewvarangkul O, Vateekul P, Wichakam I, Anan C, Bhidayasiri R. Using Machine Learning for Predicting the Best Outcomes With Electrical Muscle Stimulation for Tremors in Parkinson's Disease. Front Aging Neurosci 2021;13:727654. [PMID: 34566628 DOI: 10.3389/fnagi.2021.727654] [Reference Citation Analysis]
5 Thenault R, Kaulanjan K, Darde T, Rioux-leclercq N, Bensalah K, Mermier M, Khene Z, Peyronnet B, Shariat S, Pradère B, Mathieu R. The Application of Artificial Intelligence in Prostate Cancer Management—What Improvements Can Be Expected? A Systematic Review. Applied Sciences 2020;10:6428. [DOI: 10.3390/app10186428] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
6 Avanzo M, Trianni A, Botta F, Talamonti C, Stasi M, Iori M. Artificial Intelligence and the Medical Physicist: Welcome to the Machine. Applied Sciences 2021;11:1691. [DOI: 10.3390/app11041691] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
7 Manco L, Maffei N, Strolin S, Vichi S, Bottazzi L, Strigari L. Basic of machine learning and deep learning in imaging for medical physicists. Physica Medica 2021;83:194-205. [DOI: 10.1016/j.ejmp.2021.03.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Bizzego A, Gabrieli G, Esposito G. Deep Neural Networks and Transfer Learning on a Multivariate Physiological Signal Dataset. Bioengineering (Basel) 2021;8:35. [PMID: 33800842 DOI: 10.3390/bioengineering8030035] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Mehrvar S, Himmel LE, Babburi P, Goldberg AL, Guffroy M, Janardhan K, Krempley AL, Bawa B. Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. J Pathol Inform 2021;12:42. [PMID: 34881097 DOI: 10.4103/jpi.jpi_36_21] [Reference Citation Analysis]
10 Hoefling H, Sing T, Hossain I, Boisclair J, Doelemeyer A, Flandre T, Piaia A, Romanet V, Santarossa G, Saravanan C, Sutter E, Turner O, Wuersch K, Moulin P. HistoNet: A Deep Learning-Based Model of Normal Histology. Toxicol Pathol 2021;49:784-97. [PMID: 33653171 DOI: 10.1177/0192623321993425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Greenberg A, Aizic A, Zubkov A, Borsekofsky S, Hagege RR, Hershkovitz D. Automatic ganglion cell detection for improving the efficiency and accuracy of hirschprung disease diagnosis. Sci Rep 2021;11:3306. [PMID: 33558593 DOI: 10.1038/s41598-021-82869-y] [Reference Citation Analysis]
12 Chen M, Li H, Wang J, Yuan W, Altaye M, Parikh NA, He L. Early Prediction of Cognitive Deficit in Very Preterm Infants Using Brain Structural Connectome With Transfer Learning Enhanced Deep Convolutional Neural Networks. Front Neurosci 2020;14:858. [PMID: 33041749 DOI: 10.3389/fnins.2020.00858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Clymer D, Kostadinov S, Catov J, Skvarca L, Pantanowitz L, Cagan J, LeDuc P. Decidual Vasculopathy Identification in Whole Slide Images Using Multiresolution Hierarchical Convolutional Neural Networks. Am J Pathol 2020;190:2111-22. [PMID: 32679230 DOI: 10.1016/j.ajpath.2020.06.014] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Chierici M, Bussola N, Marcolini A, Francescatto M, Zandonà A, Trastulla L, Agostinelli C, Jurman G, Furlanello C. Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling. Front Oncol 2020;10:1065. [PMID: 32714870 DOI: 10.3389/fonc.2020.01065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Aeffner F, Sing T, Turner OC. Special Issue on Digital Pathology, Tissue Image Analysis, Artificial Intelligence, and Machine Learning: Approximation of the Effect of Novel Technologies on Toxicologic Pathology. Toxicol Pathol 2021;49:705-8. [PMID: 33840332 DOI: 10.1177/0192623321993756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Avanzo M, Porzio M, Lorenzon L, Milan L, Sghedoni R, Russo G, Massafra R, Fanizzi A, Barucci A, Ardu V, Branchini M, Giannelli M, Gallio E, Cilla S, Tangaro S, Lombardi A, Pirrone G, De Martin E, Giuliano A, Belmonte G, Russo S, Rampado O, Mettivier G. Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy. Physica Medica 2021;83:221-41. [DOI: 10.1016/j.ejmp.2021.04.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Badea L, Stănescu E. Identifying transcriptomic correlates of histology using deep learning. PLoS One 2020;15:e0242858. [PMID: 33237966 DOI: 10.1371/journal.pone.0242858] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Hildebrand LA, Pierce CJ, Dennis M, Paracha M, Maoz A. Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer. Cancers (Basel). 2021;13. [PMID: 33494280 DOI: 10.3390/cancers13030391] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]